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A pair of quasi-definite linear functionals [u0 , u1] on the set of polynomials is
called a coherent pair if their corresponding sequences of monic orthogonal poly-
nomials [Pn] and [Tn] satisfy a relation

Tn=
P$n+1

n+1
&_n

P$n
n

, n�1,

with _n non-zero constants. We prove that if [u0 , u1] is a coherent pair, then at
least one of the functionals has to be classical, i.e. Hermite, Laguerre, Jacobi, or
Bessel. A similar result is derived for symmetrically coherent pairs. � 1997 Academic Press

1. INTRODUCTION

Several authors studied polynomials orthogonal with respect to a
Sobolev inner product of the form

( f , g) s=|
b

a
fg d90+* |

b

a
f $g$ d91 , (1.1)

where 90 and 91 are distribution functions and *�0. For a survey of the
theory we refer the reader to [5] and [11].

In [4] Iserles et al. introduced the concept of the coherent pair, which
proved to be a very fruitful concept. It reads as follows. Let [Pn] denote
the monic orthogonal polynomial sequence (MOPS) with respect to d90

and let [Tn] denote the MOPS with respect to d91 , then [d90 , d91] is
called a coherent pair if there exist non-zero constants _n such that

Tn=
P$n+1

n+1
&_n

P$n
n

, for all n�1. (1.2)
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Iserles et al. showed that if [d90 , d91] is a coherent pair, then the
sequence of polynomials [S*

n] orthogonal with respect to the inner product
(1.1) has an attractive structure. Put

S*
n= :

n

m=1

:n
m(*) Pm(x), n�1,

then Iserles et al. showed that the normalization of Pn and S*
n can be

changed by multiplying these functions with suitable constants in such a
way that the coefficients :n

m become independent of n, apart from the lead-
ing coefficient :n

n . Write :m=:n
m for 1�m�n&1, then :m is a polynomial

in * of degree m and the polynomials :m(*) satisfy a three term recurrence
relation. Moreover, if [d90 , d91] is a coherent pair, then the [S*

n] satisfy
a four term recurrence relation; see [2]. It is easy to prove that when
[d90 , d91] is a coherent pair, * is sufficiently large and n�2, then S*

n has
n different, real zeros interlacing with the zeros of Pn&1 and with those of
Tn&1; see [10]. Therefore it is interesting to investigate under what condi-
tions [d90 , d91] is a coherent pair.

Marcella� n and Petronilho [7] studied this problem in a more general
setting where u0 and u1 are quasi-definite linear functionals on the space of
polynomials and the corresponding MOPS satisfy a relation of the form
(1.2). They solved the problem completely for the case when one of the
functionals u0 , u1 is a classical one, i.e. Hermite, Laguerre, Jacobi, or
Bessel. In a recent paper [6], Marcella� n, Pe� rez, and Pin~ ar showed that if
[u0 , u1] is a coherent pair of quasi-definite linear functionals, then both
are semiclassical, i.e. there exist polynomials .i , �i (i=0, 1) such that
D(.iui)=�iui (i=0, 1), where D denotes the distributional differentiation.
Moreover, they showed that there exist polynomials A and B, such that
Au0=Bu1 with degree A�3, degree B�2.

It is the aim of the present paper to solve the problem completely and
to determine all coherent pairs [u0 , u1] of quasi-definite linear functionals.
We will prove that at least one of the functionals u0 , u1 has to be classical,
so all coherent pairs of functionals [u0 , u1] are already determined in [7]
(apart from some special cases which are not mentioned in [7]).

We show that there are only two cases:

(i) The functional u0 is classical; there exist polynomials ., �, \,
degree .�2, degree �=degree \=1, such that D(.u0)=�u0 and
.u0=\u1 .

(ii) The functional u1 is classical; there exist polynomials ., �, \,
degree .�2, degree �=degree \=1, such that D(.u1)=�u1 and
.u0=\u1 .
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We remark that it is possible that both u0 and u1 are classical. In Section 2
we give the basic definitions, notations, and known results on functionals and
coherent pairs of functionals. In Section 3 we show that every coherent pair
[u0 , u1] belongs to case (i) or to case (ii). Moreover, we give all coherent pairs
for linear functionals which can be represented by distribution functions.

In Section 4 the functionals are symmetric. A pair of symmetric functionals
[u0 , u1] is called a symmetrically coherent pair if their corresponding
MOPS [Pn] and [Tn] satisfy a relation

Tn=
P$n+1

n+1
&_n&1

P$n&1

n&1
, for n�2,

with _n non-zero constants. We prove that if [u0 , u1] is a symmetrically
coherent pair, then at least one of the functionals has to be classical.
Moreover, a division in two cases as for the coherent pairs is given.

2. BASIC DEFINITIONS AND RESULTS

Let u denote a linear functional defined on the space of polynomials P.
A sequence of monic polynomials [Pn] is called a monic orthogonal poly-
nomial sequence (MOPS) with respect to u if

(i) degree Pn=n, n=0, 1, 2, ...,

(ii) (u, PnPm) =0, n{m, n, m=0, 1, 2, ...,

(iii) (u, P2
n)=pn{0, n=0, 1, 2, ... .

There exists a MOPS with respect to u if and only if u is quasi-definite;
see [3], Ch. I 93. In that case the MOPS is unique. In the sequel we always
suppose the functionals to be quasi-definite.

The MOPS [Pn] satisfies a three-term recurrence relation of the form
(see [3], p. 18)

Pn+1(x)=(x&;n) Pn(x)&#n Pn&1(x), n�1,

with #n{0 for n�1, P0(x)#1, P1(x)=x&;0 .
If A is a polynomial and u a functional, then Au is defined by

(Au, p)=(u, Ap) , p # P.

If the polynomial A is not the zero-polynomial and degree A=n, then we
can write

A= :
n

k=0

ckPk ,
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with cn{0, so (Au, Pn) =cn pn{0. This implies that if A and B are poly-
nomials with Au=Bu, then ( (A&B) u, p) =0 for all p # P and A&B has
to be the zero-polynomial, i.e. A=B.

The distributional derivative Du of the functional u is defined by

(Du, p)=&(u, p$) , p # P.

It is easy to check that we have for an arbitrary polynomial .:

D(.u)=.$u+. Du.

A functional u is called classical if it satisfies a relation

D(.u)=�u,

with . and � polynomials, degree .�2, degree �=1.
The classical functionals and corresponding orthogonal polynomial

sequences are the following ones, see [9], up to a linear transformation of
the variable.

(i) degree . = 0: Hermite polynomials [Hn] with .(x) # 1,
�(x)=&2x.

(ii) degree .=1: Laguerre polynomials [L (:)
n ] with : � [&1, &2, ...],

.(x)=x, �(x)=&x+:+1.

(iii) degree .=2 and . has two different roots: Jacobi polyno-
mials [P:, ;

n ] with :, ;, :+;+1 � [&1, &2, ...], .(x)=1&x2, �(x)=
&(:+;+2) x+;&:.

(iv) degree .=2 and . has a double root: Bessel polynomials [B (:)
n ]

with : � [&2, &3, ...], .(x)=x2, �(x)=(:+2) x+2.

Finally we remark that for a quasi-definite functional u a relation
D(.u)=cu, with . a non-zero polynomial and c a constant cannot be
satisfied, since c{0 would imply (u, 1) =0 and c=0 would imply
(.u, p)=0 for all p # P.

In the sequel we will use the following definition and notations: u0 and
u1 denote quasi-definite linear functionals on P, [Pn] the MOPS with
respect to u0 , [Tn] the MOPS with respect to u1 ,

(u0 , P2
n)=pn{0, n=0, 1, 2, ...,

(u1 , T 2
n)=tn{0, n=0, 1, 2, ... .
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The pair [u0 , u1] is called a coherent pair if there exist non-zero con-
stants _n such that

Tn=
P$n+1

n+1
&_n

P$n
n

for n�1. (2.1)

For a coherent pair we introduce the polynomials

Cn=_n
Tn

tn
&

Tn&1

tn&1

, n=1, 2, ... . (2.2)

Then the leading coefficient of Cn is _n �tn{0.
The following basic proposition is due to Marcella� n, Pe� rez, Pin~ ar [6].

Proposition 1. Let [u0 , u1] denote a coherent pair, then

n
Pn

pn
u0=D(Cn u1) for n�1.

Corollary 1. Let [u0 , u1] denote a coherent pair. Then

. Du1=?u1 , .u0=Bu1 , ?u0=B Du1 ,

with

.=2
P2

p2

C1&
P1

p1

C2 , (2.3)

?=&2
P2

p2

C$1+
P1

p1

C$2 , (2.4)

B=C1C$2&C$1C2 , (2.5)

where degree .�3, degree ?�2, degree B=2.

Proof. Proposition 1 with n=1 and n=2 reads:

P1

p1

u0=C$1 u1+C1 Du1 , (2.6)

2
P2

p2

u0=C$2 u1+C2 Du1 . (2.7)

Elimination of u0 gives the first result, elimination of Du1 the second one
and elimination of u1 the last one. The coefficient of xn in the polynomial
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Cn defined by (2.2) is _n �tn ; thus the coefficient of x2 in the polynomial B
defined in (2.5) is _1 _2 �t1 t2{0; then B has degree 2. K

3. DETERMINATION OF COHERENT PAIRS

In this section we suppose that [u0 , u1] is a coherent pair and we use the
notations of Section 2. We will prove that at least one of the functionals u0 ,
u1 is classical. The polynomial B defined in (2.5) is of degree 2 and there-
fore has two zeros !1 and !2 . We will prove that if !1=!2 , then u0 is classi-
cal (Theorem 1) and if !1{!2 , then u1 has to be classical (Theorem 2).

If the polynomial B in (2.5) has a double zero, then the situation is
simple.

Theorem 1. Let [u0 , u1] denote a coherent pair of quasi-definite linear
functionals. Suppose that the polynomial B in (2.5) has a double zero !. Then

(i) u0 is classical with D(.~ u0)=�u0 for some polynomials .~ , �,
degree .~ �2, degree �=1;

(ii) .~ u0=(_1_2 �t1 t2)(x&!) u1 .

Proof. From (2.5) we obtain

0=B$(!)=C1(!) C"2(!).

Hence C1(!)=0. Then applying again (2.5) we have 0=B(!)=
&C$1(!) C2(!), so C2(!)=0. Then (2.3) implies .(!)=0. Write .(x)=
(x&!) .~ (x).

Since C1(!)=C2(!)=0, the polynomial C1 divides C2 . Then the elimina-
tion of Du1 from (2.6) and (2.7) can be done in such a way, that one
arrives at

.~ u0=
_1_2

t1 t2

(x&!) u1 .

Then using (2.6),

D(.~ u0)=
_1 _2

t1 t2

D((x&!) u1)=
_2

t2

D(C1u1)=
_2

t2

P1

p1

u0=�u0 ,

where � is a polynomial of degree 1, i.e. u0 is classical. K

If B in (2.5) has two different zeros, the analysis is more complicated. We
first derive some auxiliary results.
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It follows from Proposition 1 and Corollary 1, that for n�1,

n
Pn

pn
Bu1=n

Pn

pn
.u0=.D(Cn u1)

=.C$nu1+.Cn Du1=(.C$n+Cn ?) u1 .

Hence

n
Pn

pn
B=C$n.+Cn?, n�1. (3.1)

Lemma 1. Suppose that ! is such that B(!)=0, .(!){0. Then there
exists a k, independent of n, k{0, such that

Cn(!)+kC$n(!)=0 for all n�1.

Proof. Substitution of ! in (3.1) gives

C$n(!) .(!)+Cn(!) ?(!)=0, n�1.

Consider the relation for n=1. Then C$1=_1 �t1{0 and .(!){0 imply
?(!){0.

Hence

Cn(!)+kC$n(!)=0 for all n�1,

with

k=
.(!)
?(!)

{0. K

Lemma 2. Suppose that there exist !1 , !2 , k1{0, k2{0 such that

Cn(!1)+k1C$n(!1)=0 and Cn(!2)+k2 C$n(!2)=0,

for all n�1. Then !1=!2 and k1=k2 .

Proof. Using the definition of Cn in (2.2) we obtain for !j , ( j=1, 2),

_n {Tn(!j)
tn

+kj
T $n(!j)

tn ==
Tn&1(!j)

tn&1

+kj
T $n&1(!j)

tn&1

.
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Put

h ( j)
n (!j)=

Tn(!j)
tn

+kj
T $n(!j)

tn
, n�0, j=1, 2, (3.2)

then

_n h ( j)
n (!j)=h ( j)

n&1(!j), n�1, j=1, 2. (3.3)

Note that

h ( j)
0 (!j)=

1
t0

{0,

and (3.3) implies h ( j)
n (!j){0 for all n�0. Dividing the relations (3.3) for

j=1 and j=2 we obtain

h(1)
n (!1)

h (2)
n (!2)

=
h (1)

n&1(!1)
h (2)

n&1(!2)
, n�1,

and by repeated application

h (1)
n (!1)

h (2)
n (!2)

=
h (1)

0 (!1)
h (2)

0 (!2)
=1,

or

h (1)
n (!1)=h (2)

n (!2) for all n�0.

But now (3.2) gives

Tn(!1)+k1T $n(!1)=Tn(!2)+k2T $n(!2) for all n�0. (3.4)

It follows that every polynomial p satisfies

p(!1)+k1 p$(!1)=p(!2)+k2 p$(!2).

Choose p(x)=(x&!1)n then

(!2&!1)n+nk2(!2&!1)n&1=0, n�2,

and, as a consequence, !1=!2 . Finally k1=k2 . K
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Lemma 3. Let B, ., and ? denote the polynomials defined in Corol-
lary 2. Suppose that B has two different zeros. Then at least one of them is
also a zero of .. If B(!)=.(!)=0, then C1(!){0 and ?(!)=0.

Proof. It is a direct consequence of Lemma 1 and Lemma 2, that B and
. have at least one zero ! in common. Since ! is a simple zero of B, it
follows B$(!){0. By using (2.5) B$=C1C"2 , hence C1(!){0. Substituting
! in (3.1) with n=1, we obtain ?(!)=0. K

We now are able to treat the situation that B in (2.5) has two different
zeros.

Theorem 2. Let [u0 , u1] denote a coherent pair of quasi-definite linear
functionals. Suppose that the polynomial B in (2.5) has two different zeros.
Then

(i) u1 is classical with D(.~ u1)=�u1 for some polynomials .~ , �,
degree .~ �2, degree �=1;

(ii) there exists a ! such that

.~ u0=
_1_2

t1 t2

(x&!) u1 .

Proof. Let !1 , !2 denote the different zeros of B. By Lemma 3 at least
one of them is also a zero of .. Without loss of generality we may suppose
.(!1)=0. Then by Lemma 3 also ?(!1)=0.

Put B=(x&!1) B� , i.e. B� =(_1 _2 �t1 t2)(x&!2), .=(x&!1) .~ , ?=
(x&!1) ?1 .

Then (3.1) reduces to

n
Pn

pn
B� =C$n.~ +Cn ?1 , n�1. (3.5)

Moreover, the relations .u0=Bu1 , ?u0=B Du1 and . Du1=?u1 from
Corollary 1 reduce to

.~ u0=B� u1+M$(!1), (3.6)

B� Du1=?1 u0+N$(!1), (3.7)

.~ Du1=?1 u1+K$(!1), (3.8)

for some constants M, N and K.
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From (3.5) and Proposition 1 we obtain for n�1,

(C$n.~ +Cn?1) u0=n
Pn

pn
B� u0=B� (C$n u1+Cn Du1),

or

C$n(.~ u0&B� u1)=Cn(B� Du1&?1 u0),

and with (3.6) and (3.7)

MC$n(!1)=NCn(!1), n�1. (3.9)

Observe that C$1(!1){0 and, by Lemma 3, C1(!1){0; so M=0 if and only
if N=0.

For the second zero !2 of B there are two possibilities: .(!2){0 or
.(!2)=0.

(i) Let .(!2){0. Then Lemma 1 implies that there exists a non-zero
constant k such that

Cn(!2)+kC$n(!2)=0 for all n�1.

Since !1{!2 we conclude from Lemma 2 that (3.9) only can be satisfied
with M=N=0.

(ii) Let .(!2)=0. Then we may proceed with !2 as with !1 and con-
clude that there exist constants M2 and N2 , such that

M2C$n(!2)=N2Cn(!2) for all n�1, (3.10)

where C$1(!2){0, C1(!2){0.

Again Lemma 2 implies that at least one of the relations (3.9) and (3.10)
has to be a trivial one. Without loss of generality we may suppose that
(3.9) is trivial, i.e M=N=0.

In both cases (3.6) reduces to

.~ u0=B� u1=
_1_2

t1 t2

(x&!2) u1 (3.11)

This proves assertion (ii) of the theorem.
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To prove the first assertion we use (2.6) and (3.5) with n=1:

.~
P1

p1

u0=.~ C$1 u1+.~ C1 Du1=\P1

p1

B� &C1?1+ u1+.~ C1 Du1 ,

or

P1

p1

(.~ u0&B� u1)=C1(.~ Du1&?1u1).

With (3.11) and (3.8) we obtain KC1(!1)=0. Since, by Lemma 3,
C1(!1){0, we have K=0 and (3.8) reduces to

.~ Du1=?1u1 .

Finally D(.~ u1)=.~ $u1+.~ Du1=(.~ $+?1) u1=�u1 , where � is a polyno-
mial of degree �1. Since u1 is quasi-definite the degree of � has to be 1;
thus u1 is classical. K

Examples. A linear functional is positive-definite if and only if it can be
represented by a distribution function 9 as (see [3], Ch. II)

(u, p) =|
b

a
p(x) d9(x), p # P.

Then a coherent pair of positive-definite linear functionals [u0 , u1]
corresponds to a coherent pair of distribution functions [d90 , d91]. We
mention all coherent pairs of distribution functions which follow from
Theorem 1 and 2. The classical polynomials are given in their usual nota-
tion (see e.g. Szego� [12]) and not in their monic version; a linear change
in the variable gives again a coherent pair.

A. Laguerre Case. The distribution function d9(x)=x:e&x dx with
:>&1 on (0, �) defines a positive-definite classical functional u. The
functional u satisfies D(.u)=�u with .(x)=x.

From Theorem 1 and Theorem 2 we obtain the following coherent pairs.

d90(x)=x:e&x dx, d91(x)=
1

x&!
x:+1e&x dx+M$(!), (3.12)

where we have to take :>&1, !�0, M�0.

d90(x)=(x&!) x:&1e&x dx, d91(x)=x:e&x dx, (3.13)
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where !<0, :>0.

d90(x)=e&x dx+M$(0), d91(x)=e&x dx, (3.14)

with M�0. In (3.12) the d91 has to be interpreted as

|
�

&�
f (x) d91(x)=|

�

0
f (x)

1
x&!

x:+1e&x dx+Mf (!),

so the spectrum of 91 is [0, �) _ [!]. The spectrum of all other distribu-
tion functions is [0, �). It is not difficult to check that (3.12), (3.13) and
(3.14) indeed define coherent pairs. For (3.12) and (3.13) compare [7].
Since (3.14) has not been mentioned in [7] we give a proof of it.

Let [Pn] denote an orthogonal polynomial sequence with respect to
d90 . Since L (0)

n (0)=1 for all n�0 (see [12], 5.1.7) we have

|
�

&�
[L (0)

n &L (0)
n&1] Pk d90=|

�

0
[L (0)

n &L (0)
n&1] Pk e&x dx=0

if k�n&2. This implies

L (0)
n &L (0)

n&1=cn Pn+cn&1 Pn&1,

for some constants cn and cn&1. Then differentiation gives (compare [12],
p. 102)

L (0)
n&1=&cnP$n&cn&1P$n&1 .

Remark. If :{0, then (3.7) and (3.8) with N=K=0 imply that d90 in
(3.13) cannot have a term M$(0).

B. Jacobi Case. The distribution function d9(x)=(1&x): (1+x);

with :> &1, ;>&1 on (&1, 1) represents a positive-definite classical
functional u with D(.u)=�u, where .(x)=1&x2.

Theorem 1 and Theorem 2 give the coherent pairs

d90(x)=(1&x): (1+x); dx,
(3.15)

d91(x)=
1

|x&!|
(1&x):+1 (1+x);+1 dx+M$(!),
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with :>&1, ;>&1, |!|�1, M�0,

d90(x)=|x&!| (1&x):&1 (1&x);&1 dx,
(3.16)

d91(x)=(1&x): (1+x); dx

with |!|>1, :>0, ;>0,

d90(x)=(1+x);&1 dx+M$(1), d91(x)=(1+x); dx, (3.17)

with ;>0, M�0 and

d90(x)=(1&x):&1 dx+M$(&1), d91(x)=(1&x): dx, (3.18)

with :>0, M�0.
The spectrum of 91 in (3.15) is [&1, 1] _ [!]; the spectrum of the

other distribution functions is [&1, 1].
Again it is easy to check that this indeed are coherent pairs (for (3.15)

and (3.16) compare [7]). The coherence of (3.17) follows with
P(0, ;&1)

n (1)=1 for all n�0 (see [12], (4.1.1)) and

d
dx

(P (0, ;&1)
n &P(0, ;&1)

n&1 )=
1
2

(2n+;&1) P (0, ;)
n&1 ,

(see [1], p. 782). The coherence of (3.18) follows in a similar way.

C. Hermite Case. In the Hermite case the distribution function is
d9(x)=e&x2 dx on (&�, �) with .(x)#1. Theorem 1 and 2 imply that
there cannot exist coherent pairs.

4. SYMMETRICALLY COHERENT PAIRS

In this section u0 and u1 denote symmetric quasi-definite linear func-
tionals and [Pn] and [Tn] the corresponding MOPS. The polynomials of
even degree are even functions and the polynomials of odd degree odd
ones. In this situation (2.1) only can be satisfied with _n=0 for all n�1.
Therefore Iserles et al. [4] introduced the concept of symmetrically
coherent pair. The pair [u0 , u1] of symmetric functionals is called a sym-
metrically coherent pair if there exist non-zero constants _n such that

Tn=
P$n+1

n+1
&_n&1

P$n&1

n&1
for n�2.
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In this section we assume [u0 , u1] to be a symmetrically coherent pair
and we will prove that again at least one of the functionals has to be classi-
cal. Therefore we will use the polynomials

Cn=_n&1

Tn

tn
&

Tn&2

tn&2

, n�1.

Proposition 1 is replaced by Proposition 2 which can be proved in the
same way.

Proposition 2. Let [u0 , u1] denote a symmetrically coherent pair, then

n
Pn

pn
u0=D(Cn+1 u1) for n�1.

Corollary 2. Let [u0 , u1] denote a symmetrically coherent pair, then

. Du1=?u1 , x.u0=xBu1 , ?u0=B Du1

with

.=3
P3

xp3

C2&
P1

xp1

C4 , (4.1)

?=&3
P3

xp3

C$2+
P1

xp1

C$4 , (4.2)

B=
1
x

[C2C$4&C4C$2], (4.3)

where degree .�4, degree ?�3 and degree B=4.

Proof. Proposition 2 with n=1 and n=3 reads

P1

p1

u0=C$2 u1+C2 Du1 , (4.4)

3
P3

p3

u0=C$4 u1+C4 Du1 , (4.5)

where P1 , P3 , C$2 and C$4 are odd polynomials. Elimination of u0 gives the
first identity of Corollary 2. Elimination of Du1 gives the second and
elimination of u1 gives the last relation. The leading coefficient of B is
2(_1_3 �t2 t4){0. K
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All above mentioned polynomials are either even or odd. Then all zeros,
apart from x=0 in the odd polynomials, appear in pairs [&!, !]. A result
similar to Corollary 2 has been given in [8] based on Proposition 2 with
n=1 and n=2. We have chosen the definition of B in such a way that we
have the next lemma.

Lemma 4. (i) If B in (4.3) is of the form B=2(_1_3 �t2 t4)(x2&!2)2,
then C2=(_1 �t2)(x2&!2) and (x2&!2) | C4 .

(ii) If C2 | B, then B is of the form B=(2_1 _3�t2 t4)(x2&!2)2.

Proof. Put C2=(_1 �t2)(x2&:2) and C4=(_3 �t4)(x4+;2x2+#2). Then
(4.3) gives

B=
2_1_3

t2 t4

(x4&2:2x2&:2;2&#2).

(i) If B=2(_1_3 �t2 t4)(x2&!2)2, then :2=!2 and &:2;2&#2=!4.
This implies C2=(_1 �t2)(x2&!2) and C4(!)=0, i.e. (x2&!2) | C4 .

(ii) If C2 | B, then B(:)=0, i.e. &:4&:2;2&#2=0 and B=
(2_1_3 �t2 t4)(x2&2:2x2+:4) has the desired form. K

Lemma 4 enables us to characterize [u0 , u1] in the case that B is a pure
square.

Theorem 3. Let [u0 , u1] denote a symmetrically coherent pair of quasi-
definite linear functionals. Let B in (4.3) be of the form B=(2_1_3 �t2 t4)
(x2&!2)2. Then

(i) u0 is classical with D(.~ u0)=�u0 for some polynomials .~ , �,
degree .~ �2, degree �=1;

(ii) .~ u0=2(_1 _3 �t2 t4)(x2&!2) u1 .

Proof. It follows from Lemma 4(i) and (4.1) that we can write
.=(x2&!2) .~ , for a polynomial .~ with degree .~ �2. The elimination of
Du1 from (4.4) and (4.5) can be done in such a way that we obtain

x.~ u0=x
2_1 _3

t2 t4

(x2&!2) u1 , (4.6)

i.e.

.~ u0=2
_1 _3

t2 t4

(x2&!2) u1+M$(0), (4.7)
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for some constant M. We will show that M=0. Then u0 is classical, since
by (4.4),

D(.~ u0)=2
_3

t4

D(C2 u1)=2
_3

t4

P1

p1

u0 .

In order to prove that M=0 in (4.7) we use Proposition 2 with n=2:

2
P2

p2

u0=C$3 u1+C3 Du1 . (4.8)

Elimination of Du1 from (4.4) and (4.8) gives

\2
P2

p2

C2&
P1

p1

C3+ u0=(C2 C$3&C3 C$2) u1 ,

which will be abbreviated as

q4 u0=b4u1 , (4.9)

where q4 and b4 are even polynomials, degree q4�4, degree b4=4.
Elimination of u0 from (4.6) and (4.9) gives

.~ b4&2
_1 _3

t2 t4

q4(x2&!2)=0, (4.10)

and then elimination of u0 from (4.7) and (4.9) leads to Mq4(0)=0.
If M=0 we are ready. Therefore suppose M{0. Then q4(0)=0.

Since P2(0){0, we obtain C2(0)=0, i.e. by Lemma 4(i) !=0. Then (4.7)
reduces to

.~ u0=2
_1 _3

t2 t4

x2u1+M$(0). (4.11)

Putting q4=x2q2 , b4=x2b2 we obtain from (4.9) and (4.10)

x2q2 u0=x2b2 u1 , (4.12)

.~ b2&
2_1 _3

t2 t4

q2 x2=0. (4.13)
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Then elimination of u1 from (4.11) and (4.12) gives Mb2(0)=0. Since we
had assumed M{0 we obtain b2(0)=0, i.e.

C2C$3&C3C$2=b4=x2b2=
_1 _2

t2 t3

x4.

It is easy to see that then C3=(_2�t3) x3.
We have found that M{0 implies C2=(_1 �t2) x2 and C3=(_2 �t3) x3.

Then elimination of Du1 from (4.4) and (4.8) can be done in such a way
that one arrives at

q2 u0=
_1_2

t2 t3

x2u1 . (4.14)

Relation (4.13) reduces to

.~
_2

t3

&2
_3

t4

q2=0. (4.15)

Finally (4.11), (4.14) and (4.15) imply M=0, a contradiction. This com-
pletes the proof of the theorem. K

In order to treat the situation where B in (4.3) has two different pairs of
zeros [&!1 , !1] and [&!2 , !2] we derive a basic relation similar to rela-
tion (3.1).

By Proposition 2 and Corollary 2 we have

(2n+1)
P2n+1

p2n+1

Bu1

=(2n+1)
P2n+1

xp2n+1

xBu1

=(2n+1)
P2n+1

xp2n+1

x.u0=.D(C2n+2 u1)

=.C$2n+2u1+.C2n+2 Du1=(.C$2n+2+C2n+2?) u1 .

Hence

(2n+1)
P2n+1

xp2n+1

B=.
C$2n+2

x
+C2n+2

?
x

, n�0. (4.16)

We have used the fact that P2n+1 , C$2n+2 and ? are odd polynomials.
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Lemma 5. Let ! be such that B(!)=0, .(!){0, where B and . denote
the polynomials defined in (4.3) and (4.1). Then there exists a k independent
of n, k{0, such that

C2n+2(!)+k
C$2n+2(!)

!
=0 for all n{0.

Proof. Substitution of ! in (4.16) gives

.(!)
C$2n+2(!)

!
+C2n+2(!)

?(!)
!

=0.

(If !=0, then ?(!)�! has to be read as ?(!)�!=limx � 0(?(x)�x); the same
should be done with C$2n+2(!)�!.)

The relation with n=0 reads

.(!)
C$2(!)

!
+C2(!)

?(!)
!

=0.

Since C$2(!)�!=2(_1 �t2){0 and .(!){0 it follows ?(!)�!{0. Then the
lemma is satisfied with k=.(!)(!�?(!)){0. K

Lemma 6. Suppose that there exist !1 , !2 , k1{0 and k2{0 such that

C2n+2(!1)+k1

C$2n+2(!1)
!1

=0 and C2n+2(!2)+k2

C$2n+2(!2)
!2

=0

(4.17)

for all n�0. Then !1=\!2 and k1=k2 .

Proof. The polynomials T2n and C2n are even polynomials. Write
Tn*(x2)=T2n(x) and Cn*(x2)=C2n(x), then [Tn*] are orthogonal with
respect to the functional u1* defined by the moments (u1* , xn)=(u1 , x2n) ,
n=0, 1, 2, ... . The relations (4.17) become

C*n+1(!2
j )+2kjC*$n+1(!2

j )=0, j=1, 2, n�0.

Proceeding as in the proof of Lemma 2 we obtain !2
1=!2

2 and k1=k2 . K

Lemma 7. Suppose B in (4.3) has two different pairs of zeros. Then

(i) at least one pair of zeros of B is also a pair of zeros of .;

(ii) if (x2&!2) | B and (x2&!2) | ., then C2(!){0 and (x2&!2) | ?.
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Proof. Assertion (i) of the lemma is a direct consequence of Lemma 5
and Lemma 6. If [&!, !] is a common pair of zeros of B and ., then
(4.16) with n=0 implies x2&!2 | C2(?�x). Since B has two different pairs
of zeros Lemma 4(ii) implies C2(!){0. Hence x2&!2 | ?. K

Theorem 4. Let [u0 , u1] denote a symmetrically coherent pair of quasi-
definite linear functionals. Let B in (4.3) be of the form

B=2
_1_3

t2 t4

(x2&!2
1)(x2&!2

2) with !2
1{!2

2 .

Then

(i) u1 is classical with D(.~ u1)=�u1 for some polynomials .~ , �,
degree .~ �2, degree �=1;

(ii) there exists ! # [!1 , !2] such that

.~ u0=2
_1 _3

t2 t4

(x2&!2) u1 .

Proof. According to Lemma 7(i) we may suppose that [&!1 , !1] is
also a pair of zeros of .. Then, by Lemma 7(ii), C2(!1){0 and [&!1 , !1]
is also a pair of zeros of ?. Put

B=(x2&!2
1) B� , .=(x2&!2

1) .~ , ?=(x2&!2
1) ?1 .

Then (4.16) becomes

(2n+1)
P2n+1

p2n+1

B� =.~ C$2n+2+C2n+2 ?1 , n�0. (4.18)

Moreover, the relations x.u0=xBu1 , B Du1=?u0 and . Du1=?u1 from
Corollary 2 give

x2.~ u0=x2B� u1+M$(!1)+M$(&!1), (4.19)

xB� Du1=x?1 u0+N$(!1)+N$(&!1), (4.20)

x.~ Du1=x?1 u1+K$(!1)+K$(&!1), (4.21)

where we have used the fact that the functionals applied on polynomials of
odd degree have to give zero.

We will show M=N=K=0.
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It follows from (4.18) and Proposition 2 that

(.~ C$2n+2+C2n+2?1) u0=(2n+1)
P2n+1

p2n+1

B� u0=B� (C$2n+2u1+C2n+2 Du1).

Hence

C$2n+2

x
[x2.~ u0&x2B� u1]=C2n+2[xB� Du1&x?1u0], n�0.

Then (4.19) and (4.20) imply

2
C$2n+2(!1)

!1

M=2C2n+2(!1) N, n�0. (4.22)

Observe that C$2(!1)�!1=2(_1 �t2){0, C2(!1){0; then M=0 if and only
if N=0. Consider the second pair of zeros [&!2 , !2] of B. There are two
possibilities: .(!2){0 and .(!2)=0. If .(!2){0, then Lemma 5 and
Lemma 6 imply that relation (4.22) has to be trivial, i.e. M=N=0. If
.(!2)=0, then we can proceed with !2 as with !1 and arrive at a relation
for !2 similar to relation (4.22) for !1 . Again Lemma 6 implies that at least
one of the relations has to be a trivial one, and without loss of generality
we may suppose that the relation (4.22) for !1 is trivial. Hence in both
cases we obtain M=N=0.

In order to prove that K=0 we proceed as follows. With (4.4) and (4.18)
for n=0 we obtain

.~
P1

p1

u0=.~ (C$2 u1+C2 Du1)=\P1

p1

B� &C2?1+ u1+.~ C2 Du1 ,

or

P1

xp1

[x2.~ u0&x2B� u1]=C2[x.~ Du1&x?1u1].

Then (4.19) with M=0 and (4.21) imply

2KC2(!1)=0.

Since C2(!1){0, we have K=0.
Now we are able to prove the assertions of the theorem. Relation (4.21)

with K=0 reads x.~ Du1=x?1 u1 . Since u1 is symmetric and .~ $ and ?1 are
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odd polynomials we have (.~ Du1 , 1) =(?1u1 , 1)=0. Then the relation
can be reduced to

.~ Du1=?1u1 . (4.23)

Then D(.~ u1)=.~ $u1+.~ Du1=(.~ $+?1) u1=�u1 , with degree .~ �2,
degree ��1. However, � is an odd polynomial and �#0 is impossible for
a quasi-definite functional u1 . Then degree �=1 and u1 is classical. This
proves assertion (i) of the theorem.

In the same way (4.19) with M=0 reduces to

x.~ u0=xB� u1 (4.24)

or

.~ u0=B� u1+L$(0). (4.25)

Observe that B� =(2_1_3 �t2 t4)(x2&!2
2).

We will prove that L=0 in (4.25), which completes the proof of asser-
tion (ii) of the theorem. Elimination of u0 from (4.8) and (4.24) gives, using
(4.23),

C$3.~ +C3 ?1&2
P2

p2

B� =0.

Then elimination of u0 from (4.8) and (4.25) gives

2
P2(0)

p2

L=0.

Since P2(0){0, we obtain L=0. K

Theorem 3 and Theorem 4 enables us to give all symmetrically coherent
pairs which can be represented by distribution functions. In Theorem 3 and
Theorem 4 the ! may be complex, in the distribution functions below we
always assume the ! to be real.

D. Hermite Case. The classical distribution function is d9(x)=e&x2 dx
on (&�, �) with .(x)#1. Theorem 3 and Theorem 4 give the symmetri-
cally coherent pairs of distribution functions on (&�, �)

{e&x2 dx,
e&x2

x2+!2 dx= with !{0,

[(x2+!2) e&x2 dx, e&x2 dx].

It is easy to prove that these pairs are indeed symmetrically coherent pairs.
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E. Gegenbauer Case. The classical distribution function is d9(x)=
(1&x2): dx on (&1, 1) with :>&1; the corresponding functional u
satisfies D(.u)=�u with .(x)=1&x2.

We obtain the following symmetrically coherent pairs of distribution
functions with obvious definition of the spectra

{(1&x2):&1 dx,
(1&x2):

x2+!2 dx= , :>0, !{0,

and

{(1&x2):&1 dx,
(1&x2):

!2&x2 dx+M$(!)+M$(&!)= ,

with :>0, |!|�1, M�0.

[(x2+!2)(1&x2):&1 dx, (1&x2): dx], :>0

[(!2&x2)(1&x2):&1 dx, (1&x2): dx]

with |!|>1, :>0 and

[dx+M$(1)+M$(&1), dx], M�0.

Again one can prove that the mentioned pairs are coherent pairs.

Remark. In [2] the concept of generalized coherent pairs has been
introduced. It reads for linear functionals: let u0 and u1 denote quasi-
definite linear functionals and let [Pn] and [Tn] denote their MOPS, then
[u0 , u1] is called a generalized coherent pair if there exist constants _n , {n

such that

Tn=
P$n+1

n+1
&_n

P$n
n

&{n
P$n&1

n&1
for n�2.

Let :>&1, !1<0, !2<0, M�0, then

{x:e&x dx,
1

x&!2

x:+1e&x dx+M$(!2)=
and

[(x&!1) x:e&x dx, x:+1e&x dx]
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are coherent pairs. From this observation it easily follows that

{(x&!1) x:e&x dx,
1

x&!2

x:+1e&x dx+M$(!2)=
is a generalized coherent pair. (Obviously the dx-terms are distribution
functions on [0, �) and if M{0 the last term gives a contribution from
!2 outside (0, �).) Here none of the distribution functions is a classical
one, so the results of this paper cannot be generalized to generalized
coherent pairs.
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