Determination of All Coherent Pairs

H. G. Meijer

Faculty of Technical Mathematics and Informatics, Delft University of Technology, Mekelweg 4, 2628 CD Delft, The Netherlands

Communicated by Walter Van Assche

Received June 5, 1995; accepted in revised form May 31, 1996

A pair of quasi-definite linear functionals $\{u_0, u_1\}$ on the set of polynomials is called a coherent pair if their corresponding sequences of monic orthogonal polynomials $\{P_n\}$ and $\{T_n\}$ satisfy a relation

$$T_n = \frac{P'_{n+1}}{n+1} - \sigma_n \frac{P'_n}{n}, \qquad n \ge 1,$$

with σ_n non-zero constants. We prove that if $\{u_0, u_1\}$ is a coherent pair, then at least one of the functionals has to be classical, i.e. Hermite, Laguerre, Jacobi, or Bessel. A similar result is derived for symmetrically coherent pairs. © 1997 Academic Press

1. INTRODUCTION

Several authors studied polynomials orthogonal with respect to a Sobolev inner product of the form

$$\langle f, g \rangle_s = \int_a^b fg \, d\Psi_0 + \lambda \int_a^b f'g' \, d\Psi_1,$$
 (1.1)

where Ψ_0 and Ψ_1 are distribution functions and $\lambda \ge 0$. For a survey of the theory we refer the reader to [5] and [11].

In [4] Iserles *et al.* introduced the concept of the coherent pair, which proved to be a very fruitful concept. It reads as follows. Let $\{P_n\}$ denote the monic orthogonal polynomial sequence (MOPS) with respect to $d\Psi_0$ and let $\{T_n\}$ denote the MOPS with respect to $d\Psi_1$, then $\{d\Psi_0, d\Psi_1\}$ is called a coherent pair if there exist non-zero constants σ_n such that

$$T_n = \frac{P'_{n+1}}{n+1} - \sigma_n \frac{P'_n}{n}, \quad \text{for all} \quad n \ge 1.$$
(1.2)

Iserles *et al.* showed that if $\{d\Psi_0, d\Psi_1\}$ is a coherent pair, then the sequence of polynomials $\{S_n^{\lambda}\}$ orthogonal with respect to the inner product (1.1) has an attractive structure. Put

$$S_n^{\lambda} = \sum_{m=1}^n \alpha_m^n(\lambda) P_m(x), \qquad n \ge 1,$$

then Iserles *et al.* showed that the normalization of P_n and S_n^{λ} can be changed by multiplying these functions with suitable constants in such a way that the coefficients α_m^n become independent of *n*, apart from the leading coefficient α_n^n . Write $\alpha_m = \alpha_m^n$ for $1 \le m \le n-1$, then α_m is a polynomial in λ of degree *m* and the polynomials $\alpha_m(\lambda)$ satisfy a three term recurrence relation. Moreover, if $\{d\Psi_0, d\Psi_1\}$ is a coherent pair, then the $\{S_n^{\lambda}\}$ satisfy a four term recurrence relation; see [2]. It is easy to prove that when $\{d\Psi_0, d\Psi_1\}$ is a coherent pair, λ is sufficiently large and $n \ge 2$, then S_n^{λ} has *n* different, real zeros interlacing with the zeros of P_{n-1} and with those of T_{n-1} ; see [10]. Therefore it is interesting to investigate under what conditions $\{d\Psi_0, d\Psi_1\}$ is a coherent pair.

Marcellán and Petronilho [7] studied this problem in a more general setting where u_0 and u_1 are quasi-definite linear functionals on the space of polynomials and the corresponding MOPS satisfy a relation of the form (1.2). They solved the problem completely for the case when one of the functionals u_0 , u_1 is a classical one, i.e. Hermite, Laguerre, Jacobi, or Bessel. In a recent paper [6], Marcellán, Pérez, and Piñar showed that if $\{u_0, u_1\}$ is a coherent pair of quasi-definite linear functionals, then both are semiclassical, i.e. there exist polynomials φ_i , ψ_i (i=0, 1) such that $D(\varphi_i u_i) = \psi_i u_i$ (i=0, 1), where D denotes the distributional differentiation. Moreover, they showed that there exist polynomials A and B, such that $Au_0 = Bu_1$ with degree $A \leq 3$, degree $B \leq 2$.

It is the aim of the present paper to solve the problem completely and to determine all coherent pairs $\{u_0, u_1\}$ of quasi-definite linear functionals. We will prove that at least one of the functionals u_0, u_1 has to be classical, so all coherent pairs of functionals $\{u_0, u_1\}$ are already determined in [7] (apart from some special cases which are not mentioned in [7]).

We show that there are only two cases:

(i) The functional u_0 is classical; there exist polynomials φ , ψ , ρ , degree $\varphi \leq 2$, degree $\psi = \text{degree} \ \rho = 1$, such that $D(\varphi u_0) = \psi u_0$ and $\varphi u_0 = \rho u_1$.

(ii) The functional u_1 is classical; there exist polynomials φ , ψ , ρ , degree $\varphi \leq 2$, degree $\psi = \text{degree} \ \rho = 1$, such that $D(\varphi u_1) = \psi u_1$ and $\varphi u_0 = \rho u_1$.

We remark that it is possible that both u_0 and u_1 are classical. In Section 2 we give the basic definitions, notations, and known results on functionals and coherent pairs of functionals. In Section 3 we show that every coherent pair $\{u_0, u_1\}$ belongs to case (i) or to case (ii). Moreover, we give all coherent pairs for linear functionals which can be represented by distribution functions.

In Section 4 the functionals are symmetric. A pair of symmetric functionals $\{u_0, u_1\}$ is called a symmetrically coherent pair if their corresponding MOPS $\{P_n\}$ and $\{T_n\}$ satisfy a relation

$$T_{n} = \frac{P_{n+1}'}{n+1} - \sigma_{n-1} \frac{P_{n-1}'}{n-1}, \quad \text{for} \quad n \ge 2,$$

with σ_n non-zero constants. We prove that if $\{u_0, u_1\}$ is a symmetrically coherent pair, then at least one of the functionals has to be classical. Moreover, a division in two cases as for the coherent pairs is given.

2. BASIC DEFINITIONS AND RESULTS

Let *u* denote a linear functional defined on the space of polynomials \mathcal{P} . A sequence of monic polynomials $\{P_n\}$ is called a monic orthogonal polynomial sequence (MOPS) with respect to *u* if

(i) degree
$$P_n = n, n = 0, 1, 2, ...,$$

(ii)
$$\langle u, P_n P_m \rangle = 0, n \neq m, n, m = 0, 1, 2, ...,$$

(iii)
$$\langle u, P_n^2 \rangle = p_n \neq 0, n = 0, 1, 2, ...$$

There exists a MOPS with respect to u if and only if u is quasi-definite; see [3], Ch. I §3. In that case the MOPS is unique. In the sequel we always suppose the functionals to be quasi-definite.

The MOPS $\{P_n\}$ satisfies a three-term recurrence relation of the form (see [3], p. 18)

$$P_{n+1}(x) = (x - \beta_n) P_n(x) - \gamma_n P_{n-1}(x), \qquad n \ge 1,$$

with $\gamma_n \neq 0$ for $n \ge 1$, $P_0(x) \equiv 1$, $P_1(x) = x - \beta_0$.

If A is a polynomial and u a functional, then Au is defined by

$$\langle Au, p \rangle = \langle u, Ap \rangle, \quad p \in \mathcal{P}.$$

If the polynomial A is not the zero-polynomial and degree A = n, then we can write

$$A = \sum_{k=0}^{n} c_k P_k,$$

with $c_n \neq 0$, so $\langle Au, P_n \rangle = c_n p_n \neq 0$. This implies that if A and B are polynomials with Au = Bu, then $\langle (A - B) u, p \rangle = 0$ for all $p \in \mathcal{P}$ and A - B has to be the zero-polynomial, i.e. A = B.

The distributional derivative Du of the functional u is defined by

$$\langle Du, p \rangle = - \langle u, p' \rangle, \quad p \in \mathcal{P}.$$

It is easy to check that we have for an arbitrary polynomial φ :

$$D(\varphi u) = \varphi' u + \varphi D u.$$

A functional u is called classical if it satisfies a relation

$$D(\varphi u) = \psi u,$$

with φ and ψ polynomials, degree $\varphi \leq 2$, degree $\psi = 1$.

The classical functionals and corresponding orthogonal polynomial sequences are the following ones, see [9], up to a linear transformation of the variable.

(i) degree $\varphi = 0$: Hermite polynomials $\{H_n\}$ with $\varphi(x) \equiv 1$, $\psi(x) = -2x$.

(ii) degree $\varphi = 1$: Laguerre polynomials $\{L_n^{(\alpha)}\}$ with $\alpha \notin \{-1, -2, ...\}$, $\varphi(x) = x, \ \psi(x) = -x + \alpha + 1$.

(iii) degree $\varphi = 2$ and φ has two different roots: Jacobi polynomials $\{P_n^{\alpha,\beta}\}$ with $\alpha, \beta, \alpha + \beta + 1 \notin \{-1, -2, ...\}, \varphi(x) = 1 - x^2, \psi(x) = -(\alpha + \beta + 2) x + \beta - \alpha.$

(iv) degree $\varphi = 2$ and φ has a double root: Bessel polynomials $\{B_n^{(\alpha)}\}$ with $\alpha \notin \{-2, -3, ...\}, \varphi(x) = x^2, \psi(x) = (\alpha + 2) x + 2$.

Finally we remark that for a quasi-definite functional u a relation $D(\varphi u) = cu$, with φ a non-zero polynomial and c a constant cannot be satisfied, since $c \neq 0$ would imply $\langle u, 1 \rangle = 0$ and c = 0 would imply $\langle \varphi u, p \rangle = 0$ for all $p \in \mathcal{P}$.

In the sequel we will use the following definition and notations: u_0 and u_1 denote quasi-definite linear functionals on \mathcal{P} , $\{P_n\}$ the MOPS with respect to u_0 , $\{T_n\}$ the MOPS with respect to u_1 ,

$$\langle u_0, P_n^2 \rangle = p_n \neq 0, \qquad n = 0, 1, 2, ...,$$

 $\langle u_1, T_n^2 \rangle = t_n \neq 0, \qquad n = 0, 1, 2, ...,$

The pair $\{u_0, u_1\}$ is called a coherent pair if there exist non-zero constants σ_n such that

$$T_n = \frac{P'_{n+1}}{n+1} - \sigma_n \frac{P'_n}{n} \quad \text{for} \quad n \ge 1.$$
(2.1)

For a coherent pair we introduce the polynomials

$$C_n = \sigma_n \frac{T_n}{t_n} - \frac{T_{n-1}}{t_{n-1}}, \qquad n = 1, 2, \dots.$$
(2.2)

Then the leading coefficient of C_n is $\sigma_n/t_n \neq 0$.

The following basic proposition is due to Marcellán, Pérez, Piñar [6].

PROPOSITION 1. Let $\{u_0, u_1\}$ denote a coherent pair, then

$$n\frac{P_n}{p_n}u_0 = D(C_nu_1) \qquad for \quad n \ge 1.$$

COROLLARY 1. Let $\{u_0, u_1\}$ denote a coherent pair. Then

$$\varphi Du_1 = \pi u_1, \qquad \varphi u_0 = Bu_1, \qquad \pi u_0 = B Du_1,$$

with

$$\varphi = 2 \frac{P_2}{p_2} C_1 - \frac{P_1}{p_1} C_2, \qquad (2.3)$$

$$\pi = -2 \frac{P_2}{p_2} C_1' + \frac{P_1}{p_1} C_2', \qquad (2.4)$$

$$B = C_1 C_2' - C_1' C_2, (2.5)$$

where degree $\phi \leq 3$, degree $\pi \leq 2$, degree B = 2.

Proof. Proposition 1 with n = 1 and n = 2 reads:

$$\frac{P_1}{p_1}u_0 = C_1'u_1 + C_1 Du_1, \qquad (2.6)$$

$$2\frac{P_2}{p_2}u_0 = C'_2u_1 + C_2 Du_1.$$
(2.7)

Elimination of u_0 gives the first result, elimination of Du_1 the second one and elimination of u_1 the last one. The coefficient of x^n in the polynomial C_n defined by (2.2) is σ_n/t_n ; thus the coefficient of x^2 in the polynomial *B* defined in (2.5) is $\sigma_1 \sigma_2/t_1 t_2 \neq 0$; then *B* has degree 2.

3. DETERMINATION OF COHERENT PAIRS

In this section we suppose that $\{u_0, u_1\}$ is a coherent pair and we use the notations of Section 2. We will prove that at least one of the functionals u_0 , u_1 is classical. The polynomial *B* defined in (2.5) is of degree 2 and therefore has two zeros ξ_1 and ξ_2 . We will prove that if $\xi_1 = \xi_2$, then u_0 is classical (Theorem 1) and if $\xi_1 \neq \xi_2$, then u_1 has to be classical (Theorem 2).

If the polynomial B in (2.5) has a double zero, then the situation is simple.

THEOREM 1. Let $\{u_0, u_1\}$ denote a coherent pair of quasi-definite linear functionals. Suppose that the polynomial B in (2.5) has a double zero ξ . Then

(i) u_0 is classical with $D(\tilde{\varphi}u_0) = \psi u_0$ for some polynomials $\tilde{\varphi}$, ψ , degree $\tilde{\varphi} \leq 2$, degree $\psi = 1$;

(ii)
$$\tilde{\varphi}u_0 = (\sigma_1 \sigma_2 / t_1 t_2)(x - \xi) u_1.$$

Proof. From (2.5) we obtain

$$0 = B'(\xi) = C_1(\xi) \ C_2''(\xi).$$

Hence $C_1(\xi) = 0$. Then applying again (2.5) we have $0 = B(\xi) = -C'_1(\xi) C_2(\xi)$, so $C_2(\xi) = 0$. Then (2.3) implies $\varphi(\xi) = 0$. Write $\varphi(x) = (x - \xi) \tilde{\varphi}(x)$.

Since $C_1(\xi) = C_2(\xi) = 0$, the polynomial C_1 divides C_2 . Then the elimination of Du_1 from (2.6) and (2.7) can be done in such a way, that one arrives at

$$\tilde{\varphi}u_0 = \frac{\sigma_1 \sigma_2}{t_1 t_2} \left(x - \zeta \right) u_1.$$

Then using (2.6),

$$D(\tilde{\varphi}u_0) = \frac{\sigma_1 \sigma_2}{t_1 t_2} D((x - \xi) u_1) = \frac{\sigma_2}{t_2} D(C_1 u_1) = \frac{\sigma_2}{t_2} \frac{P_1}{P_1} u_0 = \psi u_0,$$

where ψ is a polynomial of degree 1, i.e. u_0 is classical.

If B in (2.5) has two different zeros, the analysis is more complicated. We first derive some auxiliary results.

It follows from Proposition 1 and Corollary 1, that for $n \ge 1$,

$$n \frac{P_n}{p_n} B u_1 = n \frac{P_n}{p_n} \varphi u_0 = \varphi D(C_n u_1)$$
$$= \varphi C'_n u_1 + \varphi C_n D u_1 = (\varphi C'_n + C_n \pi) u_1.$$

Hence

$$n\frac{P_n}{p_n}B = C'_n\varphi + C_n\pi, \qquad n \ge 1.$$
(3.1)

LEMMA 1. Suppose that ξ is such that $B(\xi) = 0$, $\varphi(\xi) \neq 0$. Then there exists a k, independent of n, $k \neq 0$, such that

$$C_n(\xi) + kC'_n(\xi) = 0 \quad \text{for all} \quad n \ge 1.$$

Proof. Substitution of ξ in (3.1) gives

$$C'_n(\xi) \varphi(\xi) + C_n(\xi) \pi(\xi) = 0, \qquad n \ge 1.$$

Consider the relation for n = 1. Then $C'_1 = \sigma_1/t_1 \neq 0$ and $\varphi(\xi) \neq 0$ imply $\pi(\xi) \neq 0$.

Hence

$$C_n(\xi) + kC'_n(\xi) = 0$$
 for all $n \ge 1$,

with

$$k = \frac{\varphi(\xi)}{\pi(\xi)} \neq 0. \quad \blacksquare$$

LEMMA 2. Suppose that there exist $\xi_1, \xi_2, k_1 \neq 0, k_2 \neq 0$ such that

$$C_n(\xi_1) + k_1 C'_n(\xi_1) = 0$$
 and $C_n(\xi_2) + k_2 C'_n(\xi_2) = 0$,

for all $n \ge 1$. Then $\xi_1 = \xi_2$ and $k_1 = k_2$.

Proof. Using the definition of C_n in (2.2) we obtain for ξ_j , (j = 1, 2),

$$\sigma_n \left\{ \frac{T_n(\xi_j)}{t_n} + k_j \frac{T'_n(\xi_j)}{t_n} \right\} = \frac{T_{n-1}(\xi_j)}{t_{n-1}} + k_j \frac{T'_{n-1}(\xi_j)}{t_{n-1}}.$$

Put

$$h_n^{(j)}(\xi_j) = \frac{T_n(\xi_j)}{t_n} + k_j \frac{T'_n(\xi_j)}{t_n}, \qquad n \ge 0, \quad j = 1, 2,$$
(3.2)

then

$$\sigma_n h_n^{(j)}(\xi_j) = h_{n-1}^{(j)}(\xi_j), \qquad n \ge 1, \quad j = 1, 2.$$
(3.3)

Note that

$$h_0^{(j)}(\xi_j) = \frac{1}{t_0} \neq 0,$$

and (3.3) implies $h_n^{(j)}(\xi_j) \neq 0$ for all $n \ge 0$. Dividing the relations (3.3) for j=1 and j=2 we obtain

$$\frac{h_n^{(1)}(\xi_1)}{h_n^{(2)}(\xi_2)} = \frac{h_{n-1}^{(1)}(\xi_1)}{h_{n-1}^{(2)}(\xi_2)}, \qquad n \ge 1,$$

and by repeated application

$$\frac{h_n^{(1)}(\xi_1)}{h_n^{(2)}(\xi_2)} = \frac{h_0^{(1)}(\xi_1)}{h_0^{(2)}(\xi_2)} = 1,$$

or

$$h_n^{(1)}(\xi_1) = h_n^{(2)}(\xi_2)$$
 for all $n \ge 0$.

But now (3.2) gives

 $T_n(\xi_1) + k_1 T'_n(\xi_1) = T_n(\xi_2) + k_2 T'_n(\xi_2) \quad \text{for all} \quad n \ge 0.$ (3.4)

It follows that every polynomial p satisfies

$$p(\xi_1) + k_1 p'(\xi_1) = p(\xi_2) + k_2 p'(\xi_2).$$

Choose $p(x) = (x - \xi_1)^n$ then

$$(\xi_2 - \xi_1)^n + nk_2(\xi_2 - \xi_1)^{n-1} = 0, \qquad n \ge 2,$$

and, as a consequence, $\xi_1 = \xi_2$. Finally $k_1 = k_2$.

LEMMA 3. Let B, φ , and π denote the polynomials defined in Corollary 2. Suppose that B has two different zeros. Then at least one of them is also a zero of φ . If $B(\xi) = \varphi(\xi) = 0$, then $C_1(\xi) \neq 0$ and $\pi(\xi) = 0$.

Proof. It is a direct consequence of Lemma 1 and Lemma 2, that *B* and φ have at least one zero ξ in common. Since ξ is a simple zero of *B*, it follows $B'(\xi) \neq 0$. By using (2.5) $B' = C_1 C_2''$, hence $C_1(\xi) \neq 0$. Substituting ξ in (3.1) with n = 1, we obtain $\pi(\xi) = 0$.

We now are able to treat the situation that B in (2.5) has two different zeros.

THEOREM 2. Let $\{u_0, u_1\}$ denote a coherent pair of quasi-definite linear functionals. Suppose that the polynomial B in (2.5) has two different zeros. Then

(i) u_1 is classical with $D(\tilde{\varphi}u_1) = \psi u_1$ for some polynomials $\tilde{\varphi}$, ψ , degree $\tilde{\varphi} \leq 2$, degree $\psi = 1$;

(ii) there exists a ξ such that

$$\tilde{\varphi}u_0 = \frac{\sigma_1 \sigma_2}{t_1 t_2} \left(x - \xi \right) u_1.$$

Proof. Let ξ_1, ξ_2 denote the different zeros of *B*. By Lemma 3 at least one of them is also a zero of φ . Without loss of generality we may suppose $\varphi(\xi_1) = 0$. Then by Lemma 3 also $\pi(\xi_1) = 0$.

Put $B = (x - \xi_1) \tilde{B}$, i.e. $\tilde{B} = (\sigma_1 \sigma_2 / t_1 t_2)(x - \xi_2)$, $\varphi = (x - \xi_1) \tilde{\varphi}$, $\pi = (x - \xi_1) \pi_1$.

Then (3.1) reduces to

$$n\frac{P_n}{p_n}\tilde{B} = C'_n\tilde{\varphi} + C_n\pi_1, \qquad n \ge 1.$$
(3.5)

Moreover, the relations $\varphi u_0 = Bu_1$, $\pi u_0 = B Du_1$ and $\varphi Du_1 = \pi u_1$ from Corollary 1 reduce to

$$\tilde{\varphi}u_0 = \tilde{B}u_1 + M\delta(\xi_1), \tag{3.6}$$

$$\widetilde{B} D u_1 = \pi_1 u_0 + N \delta(\xi_1), \qquad (3.7)$$

$$\tilde{\varphi} Du_1 = \pi_1 u_1 + K\delta(\xi_1), \tag{3.8}$$

for some constants M, N and K.

From (3.5) and Proposition 1 we obtain for $n \ge 1$,

$$(C'_n\tilde{\varphi}+C_n\pi_1)u_0=n\frac{P_n}{p_n}\tilde{B}u_0=\tilde{B}(C'_nu_1+C_nDu_1),$$

or

$$C'_n(\tilde{\varphi}u_0 - \tilde{B}u_1) = C_n(\tilde{B} Du_1 - \pi_1 u_0),$$

and with (3.6) and (3.7)

$$MC'_{n}(\xi_{1}) = NC_{n}(\xi_{1}), \qquad n \ge 1.$$
 (3.9)

Observe that $C'_1(\xi_1) \neq 0$ and, by Lemma 3, $C_1(\xi_1) \neq 0$; so M = 0 if and only if N = 0.

For the second zero ξ_2 of *B* there are two possibilities: $\varphi(\xi_2) \neq 0$ or $\varphi(\xi_2) = 0$.

(i) Let $\varphi(\xi_2) \neq 0$. Then Lemma 1 implies that there exists a non-zero constant k such that

$$C_n(\xi_2) + kC'_n(\xi_2) = 0 \quad \text{for all} \quad n \ge 1.$$

Since $\xi_1 \neq \xi_2$ we conclude from Lemma 2 that (3.9) only can be satisfied with M = N = 0.

(ii) Let $\varphi(\xi_2) = 0$. Then we may proceed with ξ_2 as with ξ_1 and conclude that there exist constants M_2 and N_2 , such that

$$M_2 C'_n(\xi_2) = N_2 C_n(\xi_2)$$
 for all $n \ge 1$, (3.10)

where $C'_{1}(\xi_{2}) \neq 0, C_{1}(\xi_{2}) \neq 0.$

Again Lemma 2 implies that at least one of the relations (3.9) and (3.10) has to be a trivial one. Without loss of generality we may suppose that (3.9) is trivial, i.e M = N = 0.

In both cases (3.6) reduces to

$$\tilde{\varphi}u_0 = \tilde{B}u_1 = \frac{\sigma_1 \sigma_2}{t_1 t_2} \left(x - \xi_2 \right) u_1 \tag{3.11}$$

This proves assertion (ii) of the theorem.

To prove the first assertion we use (2.6) and (3.5) with n = 1:

$$\tilde{\varphi} \frac{P_1}{p_1} u_0 = \tilde{\varphi} C_1' u_1 + \tilde{\varphi} C_1 D u_1 = \left(\frac{P_1}{p_1} \tilde{B} - C_1 \pi_1\right) u_1 + \tilde{\varphi} C_1 D u_1,$$

or

$$\frac{P_1}{p_1}(\tilde{\varphi}u_0-\tilde{B}u_1)=C_1(\tilde{\varphi}\ Du_1-\pi_1u_1).$$

With (3.11) and (3.8) we obtain $KC_1(\xi_1) = 0$. Since, by Lemma 3, $C_1(\xi_1) \neq 0$, we have K = 0 and (3.8) reduces to

$$\tilde{\varphi} D u_1 = \pi_1 u_1.$$

Finally $D(\tilde{\varphi}u_1) = \tilde{\varphi}'u_1 + \tilde{\varphi} Du_1 = (\tilde{\varphi}' + \pi_1) u_1 = \psi u_1$, where ψ is a polynomial of degree ≤ 1 . Since u_1 is quasi-definite the degree of ψ has to be 1; thus u_1 is classical.

EXAMPLES. A linear functional is positive-definite if and only if it can be represented by a distribution function Ψ as (see [3], Ch. II)

$$\langle u, p \rangle = \int_{a}^{b} p(x) d\Psi(x), \qquad p \in \mathcal{P}.$$

Then a coherent pair of positive-definite linear functionals $\{u_0, u_1\}$ corresponds to a coherent pair of distribution functions $\{d\Psi_0, d\Psi_1\}$. We mention all coherent pairs of distribution functions which follow from Theorem 1 and 2. The classical polynomials are given in their usual notation (see e.g. Szegö [12]) and not in their monic version; a linear change in the variable gives again a coherent pair.

A. Laguerre Case. The distribution function $d\Psi(x) = x^{\alpha}e^{-x} dx$ with $\alpha > -1$ on $(0, \infty)$ defines a positive-definite classical functional u. The functional u satisfies $D(\varphi u) = \psi u$ with $\varphi(x) = x$.

From Theorem 1 and Theorem 2 we obtain the following coherent pairs.

$$d\Psi_0(x) = x^{\alpha} e^{-x} dx, \qquad d\Psi_1(x) = \frac{1}{x - \xi} x^{\alpha + 1} e^{-x} dx + M\delta(\xi), \qquad (3.12)$$

where we have to take $\alpha > -1$, $\xi \leq 0$, $M \geq 0$.

$$d\Psi_0(x) = (x - \xi) x^{\alpha - 1} e^{-x} dx, \qquad d\Psi_1(x) = x^{\alpha} e^{-x} dx, \qquad (3.13)$$

where $\xi < 0$, $\alpha > 0$.

$$d\Psi_0(x) = e^{-x} dx + M\delta(0), \qquad d\Psi_1(x) = e^{-x} dx, \tag{3.14}$$

with $M \ge 0$. In (3.12) the $d\Psi_1$ has to be interpreted as

$$\int_{-\infty}^{\infty} f(x) \, d\Psi_1(x) = \int_{0}^{\infty} f(x) \, \frac{1}{x - \xi} \, x^{\alpha + 1} e^{-x} \, dx + M f(\xi),$$

so the spectrum of Ψ_1 is $[0, \infty) \cup \{\xi\}$. The spectrum of all other distribution functions is $[0, \infty)$. It is not difficult to check that (3.12), (3.13) and (3.14) indeed define coherent pairs. For (3.12) and (3.13) compare [7]. Since (3.14) has not been mentioned in [7] we give a proof of it.

Let $\{P_n\}$ denote an orthogonal polynomial sequence with respect to $d\Psi_0$. Since $L_n^{(0)}(0) = 1$ for all $n \ge 0$ (see [12], 5.1.7) we have

$$\int_{-\infty}^{\infty} \left\{ L_n^{(0)} - L_{n-1}^{(0)} \right\} P_k d\Psi_0 = \int_0^{\infty} \left\{ L_n^{(0)} - L_{n-1}^{(0)} \right\} P_k e^{-x} dx = 0$$

if $k \leq n-2$. This implies

$$L_n^{(0)} - L_{n-1}^{(0)} = c_n P_n + c_{n-1} P_{n-1},$$

for some constants c_n and c_{n-1} . Then differentiation gives (compare [12], p. 102)

$$L_{n-1}^{(0)} = -c_n P'_n - c_{n-1} P'_{n-1}.$$

Remark. If $\alpha \neq 0$, then (3.7) and (3.8) with N = K = 0 imply that $d\Psi_0$ in (3.13) cannot have a term $M\delta(0)$.

B. Jacobi Case. The distribution function $d\Psi(x) = (1-x)^{\alpha} (1+x)^{\beta}$ with $\alpha > -1$, $\beta > -1$ on (-1, 1) represents a positive-definite classical functional u with $D(\varphi u) = \psi u$, where $\varphi(x) = 1 - x^2$.

Theorem 1 and Theorem 2 give the coherent pairs

$$d\Psi_0(x) = (1-x)^{\alpha} (1+x)^{\beta} dx,$$

$$d\Psi_1(x) = \frac{1}{|x-\xi|} (1-x)^{\alpha+1} (1+x)^{\beta+1} dx + M\delta(\xi),$$
(3.15)

with $\alpha > -1$, $\beta > -1$, $|\xi| \ge 1$, $M \ge 0$,

$$d\Psi_0(x) = |x - \xi| (1 - x)^{\alpha - 1} (1 - x)^{\beta - 1} dx,$$

$$d\Psi_1(x) = (1 - x)^{\alpha} (1 + x)^{\beta} dx$$
(3.16)

with $|\xi| > 1$, $\alpha > 0$, $\beta > 0$,

$$d\Psi_0(x) = (1+x)^{\beta-1} dx + M\delta(1), \qquad d\Psi_1(x) = (1+x)^{\beta} dx, \quad (3.17)$$

with $\beta > 0$, $M \ge 0$ and

$$d\Psi_0(x) = (1-x)^{\alpha-1} dx + M\delta(-1), \qquad d\Psi_1(x) = (1-x)^{\alpha} dx, \quad (3.18)$$

with $\alpha > 0$, $M \ge 0$.

The spectrum of Ψ_1 in (3.15) is $[-1, 1] \cup \{\xi\}$; the spectrum of the other distribution functions is [-1, 1].

Again it is easy to check that this indeed are coherent pairs (for (3.15) and (3.16) compare [7]). The coherence of (3.17) follows with $P_n^{(0,\beta-1)}(1) = 1$ for all $n \ge 0$ (see [12], (4.1.1)) and

$$\frac{d}{dx}\left(P_{n}^{(0,\beta-1)}-P_{n-1}^{(0,\beta-1)}\right)=\frac{1}{2}\left(2n+\beta-1\right)P_{n-1}^{(0,\beta)},$$

(see [1], p. 782). The coherence of (3.18) follows in a similar way.

C. Hermite Case. In the Hermite case the distribution function is $d\Psi(x) = e^{-x^2} dx$ on $(-\infty, \infty)$ with $\varphi(x) \equiv 1$. Theorem 1 and 2 imply that there cannot exist coherent pairs.

4. SYMMETRICALLY COHERENT PAIRS

In this section u_0 and u_1 denote symmetric quasi-definite linear functionals and $\{P_n\}$ and $\{T_n\}$ the corresponding MOPS. The polynomials of even degree are even functions and the polynomials of odd degree odd ones. In this situation (2.1) only can be satisfied with $\sigma_n = 0$ for all $n \ge 1$. Therefore Iserles *et al.* [4] introduced the concept of symmetrically coherent pair. The pair $\{u_0, u_1\}$ of symmetric functionals is called a symmetrically coherent pair if there exist non-zero constants σ_n such that

$$T_n = \frac{P'_{n+1}}{n+1} - \sigma_{n-1} \frac{P'_{n-1}}{n-1}$$
 for $n \ge 2$.

In this section we assume $\{u_0, u_1\}$ to be a symmetrically coherent pair and we will prove that again at least one of the functionals has to be classical. Therefore we will use the polynomials

$$C_n = \sigma_{n-1} \frac{T_n}{t_n} - \frac{T_{n-2}}{t_{n-2}}, \quad n \ge 1.$$

Proposition 1 is replaced by Proposition 2 which can be proved in the same way.

PROPOSITION 2. Let $\{u_0, u_1\}$ denote a symmetrically coherent pair, then

$$n\frac{P_n}{p_n}u_0 = D(C_{n+1}u_1) \quad for \quad n \ge 1.$$

COROLLARY 2. Let $\{u_0, u_1\}$ denote a symmetrically coherent pair, then

$$\varphi Du_1 = \pi u_1, \qquad x \varphi u_0 = x B u_1, \qquad \pi u_0 = B D u_1$$

with

$$\varphi = 3 \frac{P_3}{xp_3} C_2 - \frac{P_1}{xp_1} C_4, \tag{4.1}$$

$$\pi = -3 \frac{P_3}{xp_3} C_2' + \frac{P_1}{xp_1} C_4', \qquad (4.2)$$

$$B = \frac{1}{x} \{ C_2 C'_4 - C_4 C'_2 \}, \tag{4.3}$$

where degree $\phi \leq 4$, degree $\pi \leq 3$ and degree B = 4.

Proof. Proposition 2 with n = 1 and n = 3 reads

$$\frac{P_1}{p_1}u_0 = C'_2 u_1 + C_2 D u_1, \tag{4.4}$$

$$3\frac{P_3}{p_3}u_0 = C'_4u_1 + C_4 Du_1, \qquad (4.5)$$

where P_1 , P_3 , C'_2 and C'_4 are odd polynomials. Elimination of u_0 gives the first identity of Corollary 2. Elimination of Du_1 gives the second and elimination of u_1 gives the last relation. The leading coefficient of *B* is $2(\sigma_1\sigma_3/t_2t_4) \neq 0$.

All above mentioned polynomials are either even or odd. Then all zeros, apart from x = 0 in the odd polynomials, appear in pairs $\{-\xi, \xi\}$. A result similar to Corollary 2 has been given in [8] based on Proposition 2 with n = 1 and n = 2. We have chosen the definition of B in such a way that we have the next lemma.

LEMMA 4. (i) If B in (4.3) is of the form $B = 2(\sigma_1 \sigma_3 / t_2 t_4)(x^2 - \xi^2)^2$, then $C_2 = (\sigma_1 / t_2)(x^2 - \xi^2)$ and $(x^2 - \xi^2) | C_4$.

(ii) If $C_2 | B$, then B is of the form $B = (2\sigma_1\sigma_3/t_2t_4)(x^2 - \xi^2)^2$.

Proof. Put $C_2 = (\sigma_1/t_2)(x^2 - \alpha^2)$ and $C_4 = (\sigma_3/t_4)(x^4 + \beta^2 x^2 + \gamma^2)$. Then (4.3) gives

$$B = \frac{2\sigma_1 \sigma_3}{t_2 t_4} (x^4 - 2\alpha^2 x^2 - \alpha^2 \beta^2 - \gamma^2).$$

(i) If $B = 2(\sigma_1 \sigma_3 / t_2 t_4)(x^2 - \xi^2)^2$, then $\alpha^2 = \xi^2$ and $-\alpha^2 \beta^2 - \gamma^2 = \xi^4$. This implies $C_2 = (\sigma_1 / t_2)(x^2 - \xi^2)$ and $C_4(\xi) = 0$, i.e. $(x^2 - \xi^2) | C_4$.

(ii) If $C_2 \mid B$, then $B(\alpha) = 0$, i.e. $-\alpha^4 - \alpha^2 \beta^2 - \gamma^2 = 0$ and $B = (2\sigma_1 \sigma_3 / t_2 t_4)(x^2 - 2\alpha^2 x^2 + \alpha^4)$ has the desired form.

Lemma 4 enables us to characterize $\{u_0, u_1\}$ in the case that B is a pure square.

THEOREM 3. Let $\{u_0, u_1\}$ denote a symmetrically coherent pair of quasidefinite linear functionals. Let B in (4.3) be of the form $B = (2\sigma_1\sigma_3/t_2t_4)$ $(x^2 - \xi^2)^2$. Then

(i) u_0 is classical with $D(\tilde{\varphi}u_0) = \psi u_0$ for some polynomials $\tilde{\varphi}$, ψ , degree $\tilde{\varphi} \leq 2$, degree $\psi = 1$;

(ii)
$$\tilde{\varphi}u_0 = 2(\sigma_1\sigma_3/t_2t_4)(x^2 - \xi^2)u_1$$

Proof. It follows from Lemma 4(i) and (4.1) that we can write $\varphi = (x^2 - \xi^2) \tilde{\varphi}$, for a polynomial $\tilde{\varphi}$ with degree $\tilde{\varphi} \leq 2$. The elimination of Du_1 from (4.4) and (4.5) can be done in such a way that we obtain

$$x\tilde{\varphi}u_0 = x \frac{2\sigma_1\sigma_3}{t_2t_4} \left(x^2 - \xi^2\right) u_1, \tag{4.6}$$

i.e.

$$\tilde{\varphi}u_0 = 2\frac{\sigma_1\sigma_3}{t_2t_4} \left(x^2 - \xi^2\right)u_1 + M\delta(0), \tag{4.7}$$

for some constant *M*. We will show that M = 0. Then u_0 is classical, since by (4.4),

$$D(\tilde{\varphi}u_0) = 2\frac{\sigma_3}{t_4}D(C_2u_1) = 2\frac{\sigma_3}{t_4}\frac{P_1}{P_1}u_0.$$

In order to prove that M = 0 in (4.7) we use Proposition 2 with n = 2:

$$2\frac{P_2}{p_2}u_0 = C'_3u_1 + C_3Du_1.$$
(4.8)

Elimination of Du_1 from (4.4) and (4.8) gives

$$\left(2\frac{P_2}{p_2}C_2 - \frac{P_1}{p_1}C_3\right)u_0 = \left(C_2C_3' - C_3C_2'\right)u_1,$$

which will be abbreviated as

$$q_4 u_0 = b_4 u_1, \tag{4.9}$$

where q_4 and b_4 are even polynomials, degree $q_4 \leq 4$, degree $b_4 = 4$. Elimination of u_0 from (4.6) and (4.9) gives

$$\tilde{\varphi}b_4 - 2\frac{\sigma_1\sigma_3}{t_2t_4}q_4(x^2 - \xi^2) = 0, \qquad (4.10)$$

and then elimination of u_0 from (4.7) and (4.9) leads to $Mq_4(0) = 0$.

If M=0 we are ready. Therefore suppose $M \neq 0$. Then $q_4(0) = 0$. Since $P_2(0) \neq 0$, we obtain $C_2(0) = 0$, i.e. by Lemma 4(i) $\xi = 0$. Then (4.7) reduces to

$$\tilde{\varphi}u_0 = 2\frac{\sigma_1 \sigma_3}{t_2 t_4} x^2 u_1 + M\delta(0).$$
(4.11)

Putting $q_4 = x^2 q_2$, $b_4 = x^2 b_2$ we obtain from (4.9) and (4.10)

$$x^2 q_2 u_0 = x^2 b_2 u_1, \tag{4.12}$$

$$\tilde{\varphi}b_2 - \frac{2\sigma_1\sigma_3}{t_2t_4}q_2x^2 = 0.$$
(4.13)

Then elimination of u_1 from (4.11) and (4.12) gives $Mb_2(0) = 0$. Since we had assumed $M \neq 0$ we obtain $b_2(0) = 0$, i.e.

$$C_2 C'_3 - C_3 C'_2 = b_4 = x^2 b_2 = \frac{\sigma_1 \sigma_2}{t_2 t_3} x^4.$$

It is easy to see that then $C_3 = (\sigma_2/t_3) x^3$.

We have found that $M \neq 0$ implies $C_2 = (\sigma_1/t_2) x^2$ and $C_3 = (\sigma_2/t_3) x^3$. Then elimination of Du_1 from (4.4) and (4.8) can be done in such a way that one arrives at

$$q_2 u_0 = \frac{\sigma_1 \sigma_2}{t_2 t_3} x^2 u_1. \tag{4.14}$$

Relation (4.13) reduces to

$$\tilde{\varphi} \frac{\sigma_2}{t_3} - 2 \frac{\sigma_3}{t_4} q_2 = 0.$$
(4.15)

Finally (4.11), (4.14) and (4.15) imply M = 0, a contradiction. This completes the proof of the theorem.

In order to treat the situation where *B* in (4.3) has two different pairs of zeros $\{-\xi_1, \xi_1\}$ and $\{-\xi_2, \xi_2\}$ we derive a basic relation similar to relation (3.1).

By Proposition 2 and Corollary 2 we have

$$(2n+1)\frac{P_{2n+1}}{p_{2n+1}}Bu_1$$

= $(2n+1)\frac{P_{2n+1}}{xp_{2n+1}}xBu_1$
= $(2n+1)\frac{P_{2n+1}}{xp_{2n+1}}x\varphi u_0 = \varphi D(C_{2n+2}u_1)$
= $\varphi C'_{2n+2}u_1 + \varphi C_{2n+2}Du_1 = (\varphi C'_{2n+2} + C_{2n+2}\pi)u_1.$

Hence

$$(2n+1)\frac{P_{2n+1}}{xp_{2n+1}}B = \varphi \frac{C'_{2n+2}}{x} + C_{2n+2}\frac{\pi}{x}, \qquad n \ge 0.$$
(4.16)

We have used the fact that P_{2n+1} , C'_{2n+2} and π are odd polynomials.

LEMMA 5. Let ξ be such that $B(\xi) = 0$, $\varphi(\xi) \neq 0$, where B and φ denote the polynomials defined in (4.3) and (4.1). Then there exists a k independent of n, $k \neq 0$, such that

$$C_{2n+2}(\xi) + k \frac{C'_{2n+2}(\xi)}{\xi} = 0$$
 for all $n \neq 0$.

Proof. Substitution of ξ in (4.16) gives

$$\varphi(\xi) \frac{C'_{2n+2}(\xi)}{\xi} + C_{2n+2}(\xi) \frac{\pi(\xi)}{\xi} = 0.$$

(If $\xi = 0$, then $\pi(\xi)/\xi$ has to be read as $\pi(\xi)/\xi = \lim_{x \to 0} (\pi(x)/x)$; the same should be done with $C'_{2n+2}(\xi)/\xi$.)

The relation with n = 0 reads

$$\varphi(\xi) \frac{C_2'(\xi)}{\xi} + C_2(\xi) \frac{\pi(\xi)}{\xi} = 0.$$

Since $C'_2(\xi)/\xi = 2(\sigma_1/t_2) \neq 0$ and $\varphi(\xi) \neq 0$ it follows $\pi(\xi)/\xi \neq 0$. Then the lemma is satisfied with $k = \varphi(\xi)(\xi/\pi(\xi)) \neq 0$.

LEMMA 6. Suppose that there exist $\xi_1, \xi_2, k_1 \neq 0$ and $k_2 \neq 0$ such that

$$C_{2n+2}(\xi_1) + k_1 \frac{C'_{2n+2}(\xi_1)}{\xi_1} = 0 \quad and \quad C_{2n+2}(\xi_2) + k_2 \frac{C'_{2n+2}(\xi_2)}{\xi_2} = 0$$
(4.17)

for all $n \ge 0$. Then $\xi_1 = \pm \xi_2$ and $k_1 = k_2$.

Proof. The polynomials T_{2n} and C_{2n} are even polynomials. Write $T_n^*(x^2) = T_{2n}(x)$ and $C_n^*(x^2) = C_{2n}(x)$, then $\{T_n^*\}$ are orthogonal with respect to the functional u_1^* defined by the moments $\langle u_1^*, x^n \rangle = \langle u_1, x^{2n} \rangle$, $n = 0, 1, 2, \dots$ The relations (4.17) become

$$C_{n+1}^*(\xi_j^2) + 2k_j C_{n+1}^{*\prime}(\xi_j^2) = 0, \quad j = 1, 2, \quad n \ge 0.$$

Proceeding as in the proof of Lemma 2 we obtain $\xi_1^2 = \xi_2^2$ and $k_1 = k_2$.

LEMMA 7. Suppose B in (4.3) has two different pairs of zeros. Then

- (i) at least one pair of zeros of **B** is also a pair of zeros of φ ;
- (ii) if $(x^2 \xi^2) | B$ and $(x^2 \xi^2) | \varphi$, then $C_2(\xi) \neq 0$ and $(x^2 \xi^2) | \pi$.

Proof. Assertion (i) of the lemma is a direct consequence of Lemma 5 and Lemma 6. If $\{-\xi, \xi\}$ is a common pair of zeros of *B* and φ , then (4.16) with n = 0 implies $x^2 - \xi^2 | C_2(\pi/x)$. Since *B* has two different pairs of zeros Lemma 4(ii) implies $C_2(\xi) \neq 0$. Hence $x^2 - \xi^2 | \pi$.

THEOREM 4. Let $\{u_0, u_1\}$ denote a symmetrically coherent pair of quasidefinite linear functionals. Let B in (4.3) be of the form

$$B = 2 \frac{\sigma_1 \sigma_3}{t_2 t_4} (x^2 - \xi_1^2) (x^2 - \xi_2^2) \quad \text{with} \quad \xi_1^2 \neq \xi_2^2.$$

Then

(i) u_1 is classical with $D(\tilde{\varphi}u_1) = \psi u_1$ for some polynomials $\tilde{\varphi}$, ψ , degree $\tilde{\varphi} \leq 2$, degree $\psi = 1$;

(ii) there exists $\xi \in \{\xi_1, \xi_2\}$ such that

$$\tilde{\varphi}u_0 = 2 \frac{\sigma_1 \sigma_3}{t_2 t_4} \left(x^2 - \xi^2 \right) u_1.$$

Proof. According to Lemma 7(i) we may suppose that $\{-\xi_1, \xi_1\}$ is also a pair of zeros of φ . Then, by Lemma 7(ii), $C_2(\xi_1) \neq 0$ and $\{-\xi_1, \xi_1\}$ is also a pair of zeros of π . Put

$$B = (x^2 - \xi_1^2) \tilde{B}, \qquad \varphi = (x^2 - \xi_1^2) \tilde{\varphi}, \qquad \pi = (x^2 - \xi_1^2) \pi_1.$$

Then (4.16) becomes

$$(2n+1)\frac{P_{2n+1}}{p_{2n+1}}\tilde{B} = \tilde{\varphi}C'_{2n+2} + C_{2n+2}\pi_1, \qquad n \ge 0.$$
(4.18)

Moreover, the relations $x\varphi u_0 = xBu_1$, $BDu_1 = \pi u_0$ and $\varphi Du_1 = \pi u_1$ from Corollary 2 give

$$x^{2}\tilde{\varphi}u_{0} = x^{2}\tilde{B}u_{1} + M\delta(\xi_{1}) + M\delta(-\xi_{1}), \qquad (4.19)$$

$$x\tilde{B} Du_1 = x\pi_1 u_0 + N\delta(\xi_1) + N\delta(-\xi_1),$$
(4.20)

$$x\tilde{\varphi} Du_1 = x\pi_1 u_1 + K\delta(\xi_1) + K\delta(-\xi_1), \qquad (4.21)$$

where we have used the fact that the functionals applied on polynomials of odd degree have to give zero.

We will show M = N = K = 0.

It follows from (4.18) and Proposition 2 that

$$(\tilde{\varphi}C'_{2n+2}+C_{2n+2}\pi_1)u_0=(2n+1)\frac{P_{2n+1}}{p_{2n+1}}\tilde{B}u_0=\tilde{B}(C'_{2n+2}u_1+C_{2n+2}Du_1).$$

Hence

$$\frac{C'_{2n+2}}{x} \{ x^2 \tilde{\varphi} u_0 - x^2 \tilde{B} u_1 \} = C_{2n+2} \{ x \tilde{B} D u_1 - x \pi_1 u_0 \}, \qquad n \ge 0.$$

Then (4.19) and (4.20) imply

$$2\frac{C'_{2n+2}(\xi_1)}{\xi_1}M = 2C_{2n+2}(\xi_1)N, \qquad n \ge 0.$$
(4.22)

Observe that $C'_2(\xi_1)/\xi_1 = 2(\sigma_1/t_2) \neq 0$, $C_2(\xi_1) \neq 0$; then M = 0 if and only if N = 0. Consider the second pair of zeros $\{-\xi_2, \xi_2\}$ of B. There are two possibilities: $\varphi(\xi_2) \neq 0$ and $\varphi(\xi_2) = 0$. If $\varphi(\xi_2) \neq 0$, then Lemma 5 and Lemma 6 imply that relation (4.22) has to be trivial, i.e. M = N = 0. If $\varphi(\xi_2) = 0$, then we can proceed with ξ_2 as with ξ_1 and arrive at a relation for ξ_2 similar to relation (4.22) for ξ_1 . Again Lemma 6 implies that at least one of the relations has to be a trivial one, and without loss of generality we may suppose that the relation (4.22) for ξ_1 is trivial. Hence in both cases we obtain M = N = 0.

In order to prove that K = 0 we proceed as follows. With (4.4) and (4.18) for n = 0 we obtain

$$\tilde{\varphi} \frac{P_1}{p_1} u_0 = \tilde{\varphi}(C_2' u_1 + C_2 D u_1) = \left(\frac{P_1}{p_1} \tilde{B} - C_2 \pi_1\right) u_1 + \tilde{\varphi} C_2 D u_1,$$

or

$$\frac{P_1}{xp_1} \{ x^2 \tilde{\varphi} u_0 - x^2 \tilde{B} u_1 \} = C_2 \{ x \tilde{\varphi} D u_1 - x \pi_1 u_1 \}.$$

Then (4.19) with M = 0 and (4.21) imply

$$2KC_2(\xi_1) = 0.$$

Since $C_2(\xi_1) \neq 0$, we have K = 0.

Now we are able to prove the assertions of the theorem. Relation (4.21) with K = 0 reads $x\tilde{\varphi} Du_1 = x\pi_1 u_1$. Since u_1 is symmetric and $\tilde{\varphi}'$ and π_1 are

odd polynomials we have $\langle \tilde{\varphi} Du_1, 1 \rangle = \langle \pi_1 u_1, 1 \rangle = 0$. Then the relation can be reduced to

$$\tilde{\varphi} Du_1 = \pi_1 u_1. \tag{4.23}$$

Then $D(\tilde{\varphi}u_1) = \tilde{\varphi}'u_1 + \tilde{\varphi} Du_1 = (\tilde{\varphi}' + \pi_1) u_1 = \psi u_1$, with degree $\tilde{\varphi} \leq 2$, degree $\psi \leq 1$. However, ψ is an odd polynomial and $\psi \equiv 0$ is impossible for a quasi-definite functional u_1 . Then degree $\psi = 1$ and u_1 is classical. This proves assertion (i) of the theorem.

In the same way (4.19) with M = 0 reduces to

$$x\tilde{\varphi}u_0 = x\tilde{B}u_1 \tag{4.24}$$

or

$$\tilde{\varphi}u_0 = \tilde{B}u_1 + L\delta(0). \tag{4.25}$$

Observe that $\tilde{B} = (2\sigma_1\sigma_3/t_2t_4)(x^2 - \xi_2^2)$.

We will prove that L=0 in (4.25), which completes the proof of assertion (ii) of the theorem. Elimination of u_0 from (4.8) and (4.24) gives, using (4.23),

$$C_{3}'\tilde{\varphi} + C_{3}\pi_{1} - 2\frac{P_{2}}{p_{2}}\tilde{B} = 0.$$

Then elimination of u_0 from (4.8) and (4.25) gives

$$2\frac{P_2(0)}{p_2}L = 0.$$

Since $P_2(0) \neq 0$, we obtain L = 0.

Theorem 3 and Theorem 4 enables us to give all symmetrically coherent pairs which can be represented by distribution functions. In Theorem 3 and Theorem 4 the ξ may be complex, in the distribution functions below we always assume the ξ to be real.

D. Hermite Case. The classical distribution function is $d\Psi(x) = e^{-x^2} dx$ on $(-\infty, \infty)$ with $\varphi(x) \equiv 1$. Theorem 3 and Theorem 4 give the symmetrically coherent pairs of distribution functions on $(-\infty, \infty)$

$$\begin{cases} e^{-x^2} dx, \frac{e^{-x^2}}{x^2 + \xi^2} dx \end{cases} \quad \text{with} \quad \xi \neq 0, \\ \{ (x^2 + \xi^2) e^{-x^2} dx, e^{-x^2} dx \}. \end{cases}$$

It is easy to prove that these pairs are indeed symmetrically coherent pairs.

E. Gegenbauer Case. The classical distribution function is $d\Psi(x) = (1-x^2)^{\alpha} dx$ on (-1, 1) with $\alpha > -1$; the corresponding functional u satisfies $D(\varphi u) = \psi u$ with $\varphi(x) = 1 - x^2$.

We obtain the following symmetrically coherent pairs of distribution functions with obvious definition of the spectra

$$\left\{ (1-x^2)^{\alpha-1} \, dx, \frac{(1-x^2)^{\alpha}}{x^2+\xi^2} \, dx \right\}, \qquad \alpha > 0, \quad \xi \neq 0,$$

and

$$\left\{ (1-x^2)^{\alpha-1} \, dx, \frac{(1-x^2)^{\alpha}}{\xi^2 - x^2} \, dx + M\delta(\xi) + M\delta(-\xi) \right\},\,$$

with $\alpha > 0$, $|\xi| \ge 1$, $M \ge 0$.

$$\{ (x^2 + \xi^2)(1 - x^2)^{\alpha - 1} \, dx, \, (1 - x^2)^{\alpha} \, dx \}, \qquad \alpha > 0$$

$$\{ (\xi^2 - x^2)(1 - x^2)^{\alpha - 1} \, dx, \, (1 - x^2)^{\alpha} \, dx \}$$

with $|\xi| > 1$, $\alpha > 0$ and

$$\{dx + M\delta(1) + M\delta(-1), dx\}, \qquad M \ge 0.$$

Again one can prove that the mentioned pairs are coherent pairs.

Remark. In [2] the concept of generalized coherent pairs has been introduced. It reads for linear functionals: let u_0 and u_1 denote quasi-definite linear functionals and let $\{P_n\}$ and $\{T_n\}$ denote their MOPS, then $\{u_0, u_1\}$ is called a generalized coherent pair if there exist constants σ_n , τ_n such that

$$T_{n} = \frac{P'_{n+1}}{n+1} - \sigma_{n} \frac{P'_{n}}{n} - \tau_{n} \frac{P'_{n-1}}{n-1} \quad \text{for} \quad n \ge 2$$

Let $\alpha > -1$, $\xi_1 < 0$, $\xi_2 < 0$, $M \ge 0$, then

$$\left\{x^{\alpha}e^{-x}\,dx,\frac{1}{x-\zeta_2}\,x^{\alpha+1}e^{-x}\,dx+M\delta(\zeta_2)\right\}$$

and

$$\{(x-\xi_1) x^{\alpha} e^{-x} dx, x^{\alpha+1} e^{-x} dx\}$$

are coherent pairs. From this observation it easily follows that

$$\left\{ (x - \xi_1) \, x^{\alpha} e^{-x} \, dx, \frac{1}{x - \xi_2} \, x^{\alpha + 1} e^{-x} \, dx + M \delta(\xi_2) \right\}$$

is a generalized coherent pair. (Obviously the *dx*-terms are distribution functions on $[0, \infty)$ and if $M \neq 0$ the last term gives a contribution from ξ_2 outside $(0, \infty)$.) Here none of the distribution functions is a classical one, so the results of this paper cannot be generalized to generalized coherent pairs.

ACKNOWLEDGMENT

I am much obliged to the referee who pointed out a serious omission in the first version of the paper.

REFERENCES

- M. Abramowitz and I. A. Stegun, "Handbook of Mathematical Functions," Dover, New York, 1970.
- [2] M. G. de Bruin and H. G. Meijer, Zeros of orthogonal polynomials in a non-discrete Sobolev space, Ann. Numer. Math. 2 (1995), 233–246.
- [3] T. S. Chihara, "An Introduction to Orthogonal Polynomials," Gordon and Breach, New York, 1978.
- [4] A. Iserles, P. E. Koch, S. P. Nørsett, and J. M. Sanz-Serna, On polynomials orthogonal with respect to certain Sobolev inner products, J. Approx. Theory 65 (1991), 151–175.
- [5] F. Marcellán, M. Alfaro, and M. L. Rezola, Orthogonal polynomials on Sobolev spaces: Old and new directions, J. Comput. Appl. Math. 48 (1993), 113–131.
- [6] F. Marcellán, T. E. Pérez, and M. A. Piñar, Orthogonal polynomials on weighted Sobolev spaces: The semiclassical case, *Ann. Numer. Math.* 2 (1995), 93–122.
- [7] F. Marcellán and J. C. Petronilho, Orthogonal polynomials and coherent pairs: The classical case, *Indag. Math. N.S.* 6 (1995), 287–307.
- [8] F. Marcellán, J. C. Petronilho, T. E. Pérez, and M. A. Piñar, What is beyond coherent pairs of orthogonal polynomials?, J. Comput. Appl. Math. 65 (1995), 267–277.
- [9] P. Maroni, Une théorie algébrique des polynômes orthogonaux. Application aux polynômes orthogonaux semi-classiques, *in* "Orthogonal Polynomials and Their Applications" (C. Brezinski, L. Gori, and A. Ronveaux, Eds.), pp. 95–130, IMACS Annals on Comp. and Appl. Math., Vol. 9, Baltzer, Basel, 1991.
- [10] H. G. Meijer, Coherent pairs and zeros of Sobolev-type orthogonal polynomials, *Indag. Math. N.S.* 4 (1993), 163–176.
- [11] H. G. Meijer, A short history of orthogonal polynomials in a Sobolev space, I. The nondiscrete case, *Nieuw Arch. Wisk.* (4) 14 (1996), 93–112.
- [12] G. Szegö, "Orthogonal Polynomials," Amer. Math. Soc. Colloq. Publ., Vol. 23, 4th ed., Amer. Math. Soc., Providence, RI, 1975.