Determination of All Coherent Pairs

H. G. Meijer
Faculty of Technical Mathematics and Informatics, Delft University of Technology, Mekelweg 4, 2628 CD Delft, The Netherlands
Communicated by Walter Van Assche

Received June 5, 1995; accepted in revised form May 31, 1996

A pair of quasi-definite linear functionals $\left\{u_{0}, u_{1}\right\}$ on the set of polynomials is called a coherent pair if their corresponding sequences of monic orthogonal polynomials $\left\{P_{n}\right\}$ and $\left\{T_{n}\right\}$ satisfy a relation

$$
T_{n}=\frac{P_{n+1}^{\prime}}{n+1}-\sigma_{n} \frac{P_{n}^{\prime}}{n}, \quad n \geqslant 1
$$

with σ_{n} non-zero constants. We prove that if $\left\{u_{0}, u_{1}\right\}$ is a coherent pair, then at least one of the functionals has to be classical, i.e. Hermite, Laguerre, Jacobi, or Bessel. A similar result is derived for symmetrically coherent pairs. © 1997 Academic Press

1. INTRODUCTION

Several authors studied polynomials orthogonal with respect to a Sobolev inner product of the form

$$
\begin{equation*}
\langle f, g\rangle_{s}=\int_{a}^{b} f g d \Psi_{0}+\lambda \int_{a}^{b} f^{\prime} g^{\prime} d \Psi_{1} \tag{1.1}
\end{equation*}
$$

where Ψ_{0} and Ψ_{1} are distribution functions and $\lambda \geqslant 0$. For a survey of the theory we refer the reader to [5] and [11].

In [4] Iserles et al. introduced the concept of the coherent pair, which proved to be a very fruitful concept. It reads as follows. Let $\left\{P_{n}\right\}$ denote the monic orthogonal polynomial sequence (MOPS) with respect to $d \Psi_{0}$ and let $\left\{T_{n}\right\}$ denote the MOPS with respect to $d \Psi_{1}$, then $\left\{d \Psi_{0}, d \Psi_{1}\right\}$ is called a coherent pair if there exist non-zero constants σ_{n} such that

$$
\begin{equation*}
T_{n}=\frac{P_{n+1}^{\prime}}{n+1}-\sigma_{n} \frac{P_{n}^{\prime}}{n}, \quad \text { for all } n \geqslant 1 \tag{1.2}
\end{equation*}
$$

Iserles et al. showed that if $\left\{d \Psi_{0}, d \Psi_{1}\right\}$ is a coherent pair, then the sequence of polynomials $\left\{S_{n}^{\lambda}\right\}$ orthogonal with respect to the inner product (1.1) has an attractive structure. Put

$$
S_{n}^{\lambda}=\sum_{m=1}^{n} \alpha_{m}^{n}(\lambda) P_{m}(x), \quad n \geqslant 1,
$$

then Iserles et al. showed that the normalization of P_{n} and S_{n}^{λ} can be changed by multiplying these functions with suitable constants in such a way that the coefficients α_{m}^{n} become independent of n, apart from the leading coefficient α_{n}^{n}. Write $\alpha_{m}=\alpha_{m}^{n}$ for $1 \leqslant m \leqslant n-1$, then α_{m} is a polynomial in λ of degree m and the polynomials $\alpha_{m}(\lambda)$ satisfy a three term recurrence relation. Moreover, if $\left\{d \Psi_{0}, d \Psi_{1}\right\}$ is a coherent pair, then the $\left\{S_{n}^{\lambda}\right\}$ satisfy a four term recurrence relation; see [2]. It is easy to prove that when $\left\{d \Psi_{0}, d \Psi_{1}\right\}$ is a coherent pair, λ is sufficiently large and $n \geqslant 2$, then S_{n}^{λ} has n different, real zeros interlacing with the zeros of P_{n-1} and with those of T_{n-1}; see [10]. Therefore it is interesting to investigate under what conditions $\left\{d \Psi_{0}, d \Psi_{1}\right\}$ is a coherent pair.

Marcellán and Petronilho [7] studied this problem in a more general setting where u_{0} and u_{1} are quasi-definite linear functionals on the space of polynomials and the corresponding MOPS satisfy a relation of the form (1.2). They solved the problem completely for the case when one of the functionals u_{0}, u_{1} is a classical one, i.e. Hermite, Laguerre, Jacobi, or Bessel. In a recent paper [6], Marcellán, Pérez, and Piñar showed that if $\left\{u_{0}, u_{1}\right\}$ is a coherent pair of quasi-definite linear functionals, then both are semiclassical, i.e. there exist polynomials $\varphi_{i}, \psi_{i}(i=0,1)$ such that $D\left(\varphi_{i} u_{i}\right)=\psi_{i} u_{i}(i=0,1)$, where D denotes the distributional differentiation. Moreover, they showed that there exist polynomials A and B, such that $A u_{0}=B u_{1}$ with degree $A \leqslant 3$, degree $B \leqslant 2$.

It is the aim of the present paper to solve the problem completely and to determine all coherent pairs $\left\{u_{0}, u_{1}\right\}$ of quasi-definite linear functionals. We will prove that at least one of the functionals u_{0}, u_{1} has to be classical, so all coherent pairs of functionals $\left\{u_{0}, u_{1}\right\}$ are already determined in [7] (apart from some special cases which are not mentioned in [7]).

We show that there are only two cases:
(i) The functional u_{0} is classical; there exist polynomials φ, ψ, ρ, degree $\varphi \leqslant 2$, degree $\psi=$ degree $\rho=1$, such that $D\left(\varphi u_{0}\right)=\psi u_{0}$ and $\varphi u_{0}=\rho u_{1}$.
(ii) The functional u_{1} is classical; there exist polynomials φ, ψ, ρ, degree $\varphi \leqslant 2$, degree $\psi=$ degree $\rho=1$, such that $D\left(\varphi u_{1}\right)=\psi u_{1}$ and $\varphi u_{0}=\rho u_{1}$.

We remark that it is possible that both u_{0} and u_{1} are classical. In Section 2 we give the basic definitions, notations, and known results on functionals and coherent pairs of functionals. In Section 3 we show that every coherent pair $\left\{u_{0}, u_{1}\right\}$ belongs to case (i) or to case (ii). Moreover, we give all coherent pairs for linear functionals which can be represented by distribution functions.

In Section 4 the functionals are symmetric. A pair of symmetric functionals $\left\{u_{0}, u_{1}\right\}$ is called a symmetrically coherent pair if their corresponding $\operatorname{MOPS}\left\{P_{n}\right\}$ and $\left\{T_{n}\right\}$ satisfy a relation

$$
T_{n}=\frac{P_{n+1}^{\prime}}{n+1}-\sigma_{n-1} \frac{P_{n-1}^{\prime}}{n-1}, \quad \text { for } \quad n \geqslant 2
$$

with σ_{n} non-zero constants. We prove that if $\left\{u_{0}, u_{1}\right\}$ is a symmetrically coherent pair, then at least one of the functionals has to be classical. Moreover, a division in two cases as for the coherent pairs is given.

2. BASIC DEFINITIONS AND RESULTS

Let u denote a linear functional defined on the space of polynomials \mathscr{P}. A sequence of monic polynomials $\left\{P_{n}\right\}$ is called a monic orthogonal polynomial sequence (MOPS) with respect to u if
(i) degree $P_{n}=n, n=0,1,2, \ldots$,
(ii) $\left\langle u, P_{n} P_{m}\right\rangle=0, n \neq m, n, m=0,1,2, \ldots$,
(iii) $\left\langle u, P_{n}^{2}\right\rangle=p_{n} \neq 0, n=0,1,2, \ldots$.

There exists a MOPS with respect to u if and only if u is quasi-definite; see [3], Ch. I §3. In that case the MOPS is unique. In the sequel we always suppose the functionals to be quasi-definite.

The MOPS $\left\{P_{n}\right\}$ satisfies a three-term recurrence relation of the form (see [3], p. 18)

$$
P_{n+1}(x)=\left(x-\beta_{n}\right) P_{n}(x)-\gamma_{n} P_{n-1}(x), \quad n \geqslant 1,
$$

with $\gamma_{n} \neq 0$ for $n \geqslant 1, P_{0}(x) \equiv 1, P_{1}(x)=x-\beta_{0}$.
If A is a polynomial and u a functional, then $A u$ is defined by

$$
\langle A u, p\rangle=\langle u, A p\rangle, \quad p \in \mathscr{P} .
$$

If the polynomial A is not the zero-polynomial and degree $A=n$, then we can write

$$
A=\sum_{k=0}^{n} c_{k} P_{k},
$$

with $c_{n} \neq 0$, so $\left\langle A u, P_{n}\right\rangle=c_{n} p_{n} \neq 0$. This implies that if A and B are polynomials with $A u=B u$, then $\langle(A-B) u, p\rangle=0$ for all $p \in \mathscr{P}$ and $A-B$ has to be the zero-polynomial, i.e. $A=B$.

The distributional derivative $D u$ of the functional u is defined by

$$
\langle D u, p\rangle=-\left\langle u, p^{\prime}\right\rangle, \quad p \in \mathscr{P} .
$$

It is easy to check that we have for an arbitrary polynomial φ :

$$
D(\varphi u)=\varphi^{\prime} u+\varphi D u .
$$

A functional u is called classical if it satisfies a relation

$$
D(\varphi u)=\psi u,
$$

with φ and ψ polynomials, degree $\varphi \leqslant 2$, degree $\psi=1$.
The classical functionals and corresponding orthogonal polynomial sequences are the following ones, see [9], up to a linear transformation of the variable.
(i) degree $\varphi=0$: Hermite polynomials $\left\{H_{n}\right\}$ with $\varphi(x) \equiv 1$, $\psi(x)=-2 x$.
(ii) degree $\varphi=1$: Laguerre polynomials $\left\{L_{n}^{(\alpha)}\right\}$ with $\alpha \notin\{-1,-2, \ldots\}$, $\varphi(x)=x, \psi(x)=-x+\alpha+1$.
(iii) degree $\varphi=2$ and φ has two different roots: Jacobi polynomials $\left\{P_{n}^{\alpha, \beta}\right\}$ with $\alpha, \beta, \alpha+\beta+1 \notin\{-1,-2, \ldots\}, \varphi(x)=1-x^{2}, \psi(x)=$ $-(\alpha+\beta+2) x+\beta-\alpha$.
(iv) degree $\varphi=2$ and φ has a double root: Bessel polynomials $\left\{B_{n}^{(\alpha)}\right\}$ with $\alpha \notin\{-2,-3, \ldots\}, \varphi(x)=x^{2}, \psi(x)=(\alpha+2) x+2$.

Finally we remark that for a quasi-definite functional u a relation $D(\varphi u)=c u$, with φ a non-zero polynomial and c a constant cannot be satisfied, since $c \neq 0$ would imply $\langle u, 1\rangle=0$ and $c=0$ would imply $\langle\varphi u, p\rangle=0$ for all $p \in \mathscr{P}$.

In the sequel we will use the following definition and notations: u_{0} and u_{1} denote quasi-definite linear functionals on $\mathscr{P},\left\{P_{n}\right\}$ the MOPS with respect to $u_{0},\left\{T_{n}\right\}$ the MOPS with respect to u_{1},

$$
\begin{array}{ll}
\left\langle u_{0}, P_{n}^{2}\right\rangle=p_{n} \neq 0, & n=0,1,2, \ldots, \\
\left\langle u_{1}, T_{n}^{2}\right\rangle=t_{n} \neq 0, & n=0,1,2, \ldots .
\end{array}
$$

The pair $\left\{u_{0}, u_{1}\right\}$ is called a coherent pair if there exist non-zero constants σ_{n} such that

$$
\begin{equation*}
T_{n}=\frac{P_{n+1}^{\prime}}{n+1}-\sigma_{n} \frac{P_{n}^{\prime}}{n} \quad \text { for } n \geqslant 1 \tag{2.1}
\end{equation*}
$$

For a coherent pair we introduce the polynomials

$$
\begin{equation*}
C_{n}=\sigma_{n} \frac{T_{n}}{t_{n}}-\frac{T_{n-1}}{t_{n-1}}, \quad n=1,2, \ldots \tag{2.2}
\end{equation*}
$$

Then the leading coefficient of C_{n} is $\sigma_{n} / t_{n} \neq 0$.
The following basic proposition is due to Marcellán, Pérez, Piñar [6].
Proposition 1. Let $\left\{u_{0}, u_{1}\right\}$ denote a coherent pair, then

$$
n \frac{P_{n}}{p_{n}} u_{0}=D\left(C_{n} u_{1}\right) \quad \text { for } \quad n \geqslant 1
$$

Corollary 1. Let $\left\{u_{0}, u_{1}\right\}$ denote a coherent pair. Then

$$
\varphi D u_{1}=\pi u_{1}, \quad \varphi u_{0}=B u_{1}, \quad \pi u_{0}=B D u_{1}
$$

with

$$
\begin{align*}
\varphi & =2 \frac{P_{2}}{p_{2}} C_{1}-\frac{P_{1}}{p_{1}} C_{2}, \tag{2.3}\\
\pi & =-2 \frac{P_{2}}{p_{2}} C_{1}^{\prime}+\frac{P_{1}}{p_{1}} C_{2}^{\prime}, \tag{2.4}\\
B & =C_{1} C_{2}^{\prime}-C_{1}^{\prime} C_{2}, \tag{2.5}
\end{align*}
$$

where degree $\varphi \leqslant 3$, degree $\pi \leqslant 2$, degree $B=2$.
Proof. Proposition 1 with $n=1$ and $n=2$ reads:

$$
\begin{align*}
\frac{P_{1}}{p_{1}} u_{0} & =C_{1}^{\prime} u_{1}+C_{1} D u_{1}, \tag{2.6}\\
2 \frac{P_{2}}{p_{2}} u_{0} & =C_{2}^{\prime} u_{1}+C_{2} D u_{1} . \tag{2.7}
\end{align*}
$$

Elimination of u_{0} gives the first result, elimination of $D u_{1}$ the second one and elimination of u_{1} the last one. The coefficient of x^{n} in the polynomial
C_{n} defined by (2.2) is σ_{n} / t_{n}; thus the coefficient of x^{2} in the polynomial B defined in (2.5) is $\sigma_{1} \sigma_{2} / t_{1} t_{2} \neq 0$; then B has degree 2 .

3. DETERMINATION OF COHERENT PAIRS

In this section we suppose that $\left\{u_{0}, u_{1}\right\}$ is a coherent pair and we use the notations of Section 2. We will prove that at least one of the functionals u_{0}, u_{1} is classical. The polynomial B defined in (2.5) is of degree 2 and therefore has two zeros ξ_{1} and ξ_{2}. We will prove that if $\xi_{1}=\xi_{2}$, then u_{0} is classical (Theorem 1) and if $\xi_{1} \neq \xi_{2}$, then u_{1} has to be classical (Theorem 2).

If the polynomial B in (2.5) has a double zero, then the situation is simple.

Theorem 1. Let $\left\{u_{0}, u_{1}\right\}$ denote a coherent pair of quasi-definite linear functionals. Suppose that the polynomial B in (2.5) has a double zero ξ. Then
(i) u_{0} is classical with $D\left(\tilde{\varphi} u_{0}\right)=\psi u_{0}$ for some polynomials $\tilde{\varphi}, \psi$, degree $\tilde{\varphi} \leqslant 2$, degree $\psi=1$;
(ii) $\tilde{\varphi} u_{0}=\left(\sigma_{1} \sigma_{2} / t_{1} t_{2}\right)(x-\xi) u_{1}$.

Proof. From (2.5) we obtain

$$
0=B^{\prime}(\xi)=C_{1}(\xi) C_{2}^{\prime \prime}(\xi) .
$$

Hence $C_{1}(\xi)=0$. Then applying again (2.5) we have $0=B(\xi)=$ $-C_{1}^{\prime}(\xi) C_{2}(\xi)$, so $C_{2}(\xi)=0$. Then (2.3) implies $\varphi(\xi)=0$. Write $\varphi(x)=$ $(x-\xi) \tilde{\varphi}(x)$.

Since $C_{1}(\xi)=C_{2}(\xi)=0$, the polynomial C_{1} divides C_{2}. Then the elimination of $D u_{1}$ from (2.6) and (2.7) can be done in such a way, that one arrives at

$$
\tilde{\varphi} u_{0}=\frac{\sigma_{1} \sigma_{2}}{t_{1} t_{2}}(x-\xi) u_{1} .
$$

Then using (2.6),

$$
D\left(\tilde{\varphi} u_{0}\right)=\frac{\sigma_{1} \sigma_{2}}{t_{1} t_{2}} D\left((x-\xi) u_{1}\right)=\frac{\sigma_{2}}{t_{2}} D\left(C_{1} u_{1}\right)=\frac{\sigma_{2}}{t_{2}} \frac{P_{1}}{p_{1}} u_{0}=\psi u_{0}
$$

where ψ is a polynomial of degree 1 , i.e. u_{0} is classical.
If B in (2.5) has two different zeros, the analysis is more complicated. We first derive some auxiliary results.

It follows from Proposition 1 and Corollary 1 , that for $n \geqslant 1$,

$$
\begin{aligned}
n \frac{P_{n}}{p_{n}} B u_{1} & =n \frac{P_{n}}{p_{n}} \varphi u_{0}=\varphi D\left(C_{n} u_{1}\right) \\
& =\varphi C_{n}^{\prime} u_{1}+\varphi C_{n} D u_{1}=\left(\varphi C_{n}^{\prime}+C_{n} \pi\right) u_{1}
\end{aligned}
$$

Hence

$$
\begin{equation*}
n \frac{P_{n}}{p_{n}} B=C_{n}^{\prime} \varphi+C_{n} \pi, \quad n \geqslant 1 . \tag{3.1}
\end{equation*}
$$

Lemma 1. Suppose that ξ is such that $B(\xi)=0, \varphi(\xi) \neq 0$. Then there exists a k, independent of $n, k \neq 0$, such that

$$
C_{n}(\xi)+k C_{n}^{\prime}(\xi)=0 \quad \text { for all } \quad n \geqslant 1 .
$$

Proof. Substitution of ξ in (3.1) gives

$$
C_{n}^{\prime}(\xi) \varphi(\xi)+C_{n}(\xi) \pi(\xi)=0, \quad n \geqslant 1 .
$$

Consider the relation for $n=1$. Then $C_{1}^{\prime}=\sigma_{1} / t_{1} \neq 0$ and $\varphi(\xi) \neq 0$ imply $\pi(\xi) \neq 0$.

Hence

$$
C_{n}(\xi)+k C_{n}^{\prime}(\xi)=0 \quad \text { for all } \quad n \geqslant 1,
$$

with

$$
k=\frac{\varphi(\xi)}{\pi(\xi)} \neq 0 .
$$

Lemma 2. Suppose that there exist $\xi_{1}, \xi_{2}, k_{1} \neq 0, k_{2} \neq 0$ such that

$$
C_{n}\left(\xi_{1}\right)+k_{1} C_{n}^{\prime}\left(\xi_{1}\right)=0 \quad \text { and } \quad C_{n}\left(\xi_{2}\right)+k_{2} C_{n}^{\prime}\left(\xi_{2}\right)=0
$$

for all $n \geqslant 1$. Then $\xi_{1}=\xi_{2}$ and $k_{1}=k_{2}$.
Proof. Using the definition of C_{n} in (2.2) we obtain for $\xi_{j},(j=1,2)$,

$$
\sigma_{n}\left\{\frac{T_{n}\left(\xi_{j}\right)}{t_{n}}+k_{j} \frac{T_{n}^{\prime}\left(\xi_{j}\right)}{t_{n}}\right\}=\frac{T_{n-1}\left(\xi_{j}\right)}{t_{n-1}}+k_{j} \frac{T_{n-1}^{\prime}\left(\xi_{j}\right)}{t_{n-1}} .
$$

Put

$$
\begin{equation*}
h_{n}^{(j)}\left(\xi_{j}\right)=\frac{T_{n}\left(\xi_{j}\right)}{t_{n}}+k_{j} \frac{T_{n}^{\prime}\left(\xi_{j}\right)}{t_{n}}, \quad n \geqslant 0, \quad j=1,2 \tag{3.2}
\end{equation*}
$$

then

$$
\begin{equation*}
\sigma_{n} h_{n}^{(j)}\left(\xi_{j}\right)=h_{n-1}^{(j)}\left(\xi_{j}\right), \quad n \geqslant 1, \quad j=1,2 . \tag{3.3}
\end{equation*}
$$

Note that

$$
h_{0}^{(j)}\left(\xi_{j}\right)=\frac{1}{t_{0}} \neq 0,
$$

and (3.3) implies $h_{n}^{(j)}\left(\xi_{j}\right) \neq 0$ for all $n \geqslant 0$. Dividing the relations (3.3) for $j=1$ and $j=2$ we obtain

$$
\frac{h_{n}^{(1)}\left(\xi_{1}\right)}{h_{n}^{(2)}\left(\xi_{2}\right)}=\frac{h_{n-1}^{(1)}\left(\xi_{1}\right)}{h_{n-1}^{(2)}\left(\xi_{2}\right)}, \quad n \geqslant 1
$$

and by repeated application

$$
\frac{h_{n}^{(1)}\left(\xi_{1}\right)}{h_{n}^{(2)}\left(\xi_{2}\right)}=\frac{h_{0}^{(1)}\left(\xi_{1}\right)}{h_{0}^{(2)}\left(\xi_{2}\right)}=1,
$$

or

$$
h_{n}^{(1)}\left(\xi_{1}\right)=h_{n}^{(2)}\left(\xi_{2}\right) \quad \text { for all } \quad n \geqslant 0 .
$$

But now (3.2) gives

$$
\begin{equation*}
T_{n}\left(\xi_{1}\right)+k_{1} T_{n}^{\prime}\left(\xi_{1}\right)=T_{n}\left(\xi_{2}\right)+k_{2} T_{n}^{\prime}\left(\xi_{2}\right) \quad \text { for all } \quad n \geqslant 0 \tag{3.4}
\end{equation*}
$$

It follows that every polynomial p satisfies

$$
p\left(\xi_{1}\right)+k_{1} p^{\prime}\left(\xi_{1}\right)=p\left(\xi_{2}\right)+k_{2} p^{\prime}\left(\xi_{2}\right) .
$$

Choose $p(x)=\left(x-\xi_{1}\right)^{n}$ then

$$
\left(\xi_{2}-\xi_{1}\right)^{n}+n k_{2}\left(\xi_{2}-\xi_{1}\right)^{n-1}=0, \quad n \geqslant 2,
$$

and, as a consequence, $\xi_{1}=\xi_{2}$. Finally $k_{1}=k_{2}$.

Lemma 3. Let B, φ, and π denote the polynomials defined in Corollary 2. Suppose that B has two different zeros. Then at least one of them is also a zero of φ. If $B(\xi)=\varphi(\xi)=0$, then $C_{1}(\xi) \neq 0$ and $\pi(\xi)=0$.

Proof. It is a direct consequence of Lemma 1 and Lemma 2, that B and φ have at least one zero ξ in common. Since ξ is a simple zero of B, it follows $B^{\prime}(\xi) \neq 0$. By using (2.5) $B^{\prime}=C_{1} C_{2}^{\prime \prime}$, hence $C_{1}(\xi) \neq 0$. Substituting ξ in (3.1) with $n=1$, we obtain $\pi(\xi)=0$.

We now are able to treat the situation that B in (2.5) has two different zeros.

Theorem 2. Let $\left\{u_{0}, u_{1}\right\}$ denote a coherent pair of quasi-definite linear functionals. Suppose that the polynomial B in (2.5) has two different zeros. Then
(i) u_{1} is classical with $D\left(\tilde{\varphi} u_{1}\right)=\psi u_{1}$ for some polynomials $\tilde{\varphi}, \psi$, degree $\tilde{\varphi} \leqslant 2$, degree $\psi=1$;
(ii) there exists a ξ such that

$$
\tilde{\varphi} u_{0}=\frac{\sigma_{1} \sigma_{2}}{t_{1} t_{2}}(x-\xi) u_{1} .
$$

Proof. Let ξ_{1}, ξ_{2} denote the different zeros of B. By Lemma 3 at least one of them is also a zero of φ. Without loss of generality we may suppose $\varphi\left(\xi_{1}\right)=0$. Then by Lemma 3 also $\pi\left(\xi_{1}\right)=0$.

Put $B=\left(x-\xi_{1}\right) \widetilde{B}$, i.e. $\widetilde{B}=\left(\sigma_{1} \sigma_{2} / t_{1} t_{2}\right)\left(x-\xi_{2}\right), \quad \varphi=\left(x-\xi_{1}\right) \tilde{\varphi}, \quad \pi=$ $\left(x-\xi_{1}\right) \pi_{1}$.

Then (3.1) reduces to

$$
\begin{equation*}
n \frac{P_{n}}{p_{n}} \widetilde{B}=C_{n}^{\prime} \tilde{\varphi}+C_{n} \pi_{1}, \quad n \geqslant 1 . \tag{3.5}
\end{equation*}
$$

Moreover, the relations $\varphi u_{0}=B u_{1}, \pi u_{0}=B D u_{1}$ and $\varphi D u_{1}=\pi u_{1}$ from Corollary 1 reduce to

$$
\begin{align*}
\tilde{\varphi} u_{0} & =\widetilde{B} u_{1}+M \delta\left(\xi_{1}\right), \tag{3.6}\\
\widetilde{B} D u_{1} & =\pi_{1} u_{0}+N \delta\left(\xi_{1}\right), \tag{3.7}\\
\tilde{\varphi} D u_{1} & =\pi_{1} u_{1}+K \delta\left(\xi_{1}\right), \tag{3.8}
\end{align*}
$$

From (3.5) and Proposition 1 we obtain for $n \geqslant 1$,

$$
\left(C_{n}^{\prime} \tilde{\varphi}+C_{n} \pi_{1}\right) u_{0}=n \frac{P_{n}}{p_{n}} \widetilde{B} u_{0}=\widetilde{B}\left(C_{n}^{\prime} u_{1}+C_{n} D u_{1}\right),
$$

or

$$
C_{n}^{\prime}\left(\tilde{\varphi} u_{0}-\widetilde{B} u_{1}\right)=C_{n}\left(\tilde{B} D u_{1}-\pi_{1} u_{0}\right),
$$

and with (3.6) and (3.7)

$$
\begin{equation*}
M C_{n}^{\prime}\left(\xi_{1}\right)=N C_{n}\left(\xi_{1}\right), \quad n \geqslant 1 . \tag{3.9}
\end{equation*}
$$

Observe that $C_{1}^{\prime}\left(\xi_{1}\right) \neq 0$ and, by Lemma $3, C_{1}\left(\xi_{1}\right) \neq 0$; so $M=0$ if and only if $N=0$.

For the second zero ξ_{2} of B there are two possibilities: $\varphi\left(\xi_{2}\right) \neq 0$ or $\varphi\left(\xi_{2}\right)=0$.
(i) Let $\varphi\left(\xi_{2}\right) \neq 0$. Then Lemma 1 implies that there exists a non-zero constant k such that

$$
C_{n}\left(\xi_{2}\right)+k C_{n}^{\prime}\left(\xi_{2}\right)=0 \quad \text { for all } \quad n \geqslant 1 .
$$

Since $\xi_{1} \neq \xi_{2}$ we conclude from Lemma 2 that (3.9) only can be satisfied with $M=N=0$.
(ii) Let $\varphi\left(\xi_{2}\right)=0$. Then we may proceed with ξ_{2} as with ξ_{1} and conclude that there exist constants M_{2} and N_{2}, such that

$$
\begin{equation*}
M_{2} C_{n}^{\prime}\left(\xi_{2}\right)=N_{2} C_{n}\left(\xi_{2}\right) \quad \text { for all } \quad n \geqslant 1 \tag{3.10}
\end{equation*}
$$

where $C_{1}^{\prime}\left(\xi_{2}\right) \neq 0, C_{1}\left(\xi_{2}\right) \neq 0$.
Again Lemma 2 implies that at least one of the relations (3.9) and (3.10) has to be a trivial one. Without loss of generality we may suppose that (3.9) is trivial, i.e $M=N=0$.

In both cases (3.6) reduces to

$$
\begin{equation*}
\tilde{\varphi} u_{0}=\widetilde{B} u_{1}=\frac{\sigma_{1} \sigma_{2}}{t_{1} t_{2}}\left(x-\xi_{2}\right) u_{1} \tag{3.11}
\end{equation*}
$$

This proves assertion (ii) of the theorem.

To prove the first assertion we use (2.6) and (3.5) with $n=1$:

$$
\tilde{\varphi} \frac{P_{1}}{p_{1}} u_{0}=\tilde{\varphi} C_{1}^{\prime} u_{1}+\tilde{\varphi} C_{1} D u_{1}=\left(\frac{P_{1}}{p_{1}} \widetilde{B}-C_{1} \pi_{1}\right) u_{1}+\tilde{\varphi} C_{1} D u_{1},
$$

or

$$
\frac{P_{1}}{p_{1}}\left(\tilde{\varphi} u_{0}-\tilde{B} u_{1}\right)=C_{1}\left(\tilde{\varphi} D u_{1}-\pi_{1} u_{1}\right) .
$$

With (3.11) and (3.8) we obtain $K C_{1}\left(\xi_{1}\right)=0$. Since, by Lemma 3, $C_{1}\left(\xi_{1}\right) \neq 0$, we have $K=0$ and (3.8) reduces to

$$
\tilde{\varphi} D u_{1}=\pi_{1} u_{1} .
$$

Finally $D\left(\tilde{\varphi} u_{1}\right)=\tilde{\varphi}^{\prime} u_{1}+\tilde{\varphi} D u_{1}=\left(\tilde{\varphi}^{\prime}+\pi_{1}\right) u_{1}=\psi u_{1}$, where ψ is a polynomial of degree $\leqslant 1$. Since u_{1} is quasi-definite the degree of ψ has to be 1 ; thus u_{1} is classical.

Examples. A linear functional is positive-definite if and only if it can be represented by a distribution function Ψ as (see [3], Ch. II)

$$
\langle u, p\rangle=\int_{a}^{b} p(x) d \Psi(x), \quad p \in \mathscr{P} .
$$

Then a coherent pair of positive-definite linear functionals $\left\{u_{0}, u_{1}\right\}$ corresponds to a coherent pair of distribution functions $\left\{d \Psi_{0}, d \Psi_{1}\right\}$. We mention all coherent pairs of distribution functions which follow from Theorem 1 and 2. The classical polynomials are given in their usual notation (see e.g. Szegö [12]) and not in their monic version; a linear change in the variable gives again a coherent pair.
A. Laguerre Case. The distribution function $d \Psi(x)=x^{\alpha} e^{-x} d x$ with $\alpha>-1$ on $(0, \infty)$ defines a positive-definite classical functional u. The functional u satisfies $D(\varphi u)=\psi u$ with $\varphi(x)=x$.

From Theorem 1 and Theorem 2 we obtain the following coherent pairs.

$$
\begin{equation*}
d \Psi_{0}(x)=x^{\alpha} e^{-x} d x, \quad d \Psi_{1}(x)=\frac{1}{x-\xi} x^{\alpha+1} e^{-x} d x+M \delta(\xi) \tag{3.12}
\end{equation*}
$$

where we have to take $\alpha>-1, \xi \leqslant 0, M \geqslant 0$.

$$
\begin{equation*}
d \Psi_{0}(x)=(x-\xi) x^{\alpha-1} e^{-x} d x, \quad d \Psi_{1}(x)=x^{\alpha} e^{-x} d x, \tag{3.13}
\end{equation*}
$$

where $\xi<0, \alpha>0$.

$$
\begin{equation*}
d \Psi_{0}(x)=e^{-x} d x+M \delta(0), \quad d \Psi_{1}(x)=e^{-x} d x \tag{3.14}
\end{equation*}
$$

with $M \geqslant 0$. In (3.12) the $d \Psi_{1}$ has to be interpreted as

$$
\int_{-\infty}^{\infty} f(x) d \Psi_{1}(x)=\int_{0}^{\infty} f(x) \frac{1}{x-\xi} x^{\alpha+1} e^{-x} d x+M f(\xi)
$$

so the spectrum of Ψ_{1} is $[0, \infty) \cup\{\xi\}$. The spectrum of all other distribution functions is $[0, \infty)$. It is not difficult to check that (3.12), (3.13) and (3.14) indeed define coherent pairs. For (3.12) and (3.13) compare [7]. Since (3.14) has not been mentioned in [7] we give a proof of it.

Let $\left\{P_{n}\right\}$ denote an orthogonal polynomial sequence with respect to $d \Psi_{0}$. Since $L_{n}^{(0)}(0)=1$ for all $n \geqslant 0$ (see [12], 5.1.7) we have

$$
\int_{-\infty}^{\infty}\left\{L_{n}^{(0)}-L_{n-1}^{(0)}\right\} P_{k} d \Psi_{0}=\int_{0}^{\infty}\left\{L_{n}^{(0)}-L_{n-1}^{(0)}\right\} P_{k} e^{-x} d x=0
$$

if $k \leqslant n-2$. This implies

$$
L_{n}^{(0)}-L_{n-1}^{(0)}=c_{n} P_{n}+c_{n-1} P_{n-1}
$$

for some constants c_{n} and c_{n-1}. Then differentiation gives (compare [12], p. 102)

$$
L_{n-1}^{(0)}=-c_{n} P_{n}^{\prime}-c_{n-1} P_{n-1}^{\prime} .
$$

Remark. If $\alpha \neq 0$, then (3.7) and (3.8) with $N=K=0$ imply that $d \Psi_{0}$ in (3.13) cannot have a term $M \delta(0)$.
B. Jacobi Case. The distribution function $d \Psi(x)=(1-x)^{\alpha}(1+x)^{\beta}$ with $\alpha>-1, \beta>-1$ on $(-1,1)$ represents a positive-definite classical functional u with $D(\varphi u)=\psi u$, where $\varphi(x)=1-x^{2}$.

Theorem 1 and Theorem 2 give the coherent pairs

$$
\begin{align*}
& d \Psi_{0}(x)=(1-x)^{\alpha}(1+x)^{\beta} d x \\
& d \Psi_{1}(x)=\frac{1}{|x-\xi|}(1-x)^{\alpha+1}(1+x)^{\beta+1} d x+M \delta(\xi) \tag{3.15}
\end{align*}
$$

with $\alpha>-1, \beta>-1,|\xi| \geqslant 1, M \geqslant 0$,

$$
\begin{align*}
d \Psi_{0}(x) & =|x-\xi|(1-x)^{\alpha-1}(1-x)^{\beta-1} d x, \tag{3.16}\\
d \Psi_{1}(x) & =(1-x)^{\alpha}(1+x)^{\beta} d x
\end{align*}
$$

with $|\xi|>1, \alpha>0, \beta>0$,

$$
\begin{equation*}
d \Psi_{0}(x)=(1+x)^{\beta-1} d x+M \delta(1), \quad d \Psi_{1}(x)=(1+x)^{\beta} d x \tag{3.17}
\end{equation*}
$$

with $\beta>0, M \geqslant 0$ and

$$
\begin{equation*}
d \Psi_{0}(x)=(1-x)^{\alpha-1} d x+M \delta(-1), \quad d \Psi_{1}(x)=(1-x)^{\alpha} d x \tag{3.18}
\end{equation*}
$$

with $\alpha>0, M \geqslant 0$.
The spectrum of Ψ_{1} in (3.15) is $[-1,1] \cup\{\xi\}$; the spectrum of the other distribution functions is $[-1,1]$.

Again it is easy to check that this indeed are coherent pairs (for (3.15) and (3.16) compare [7]). The coherence of (3.17) follows with $P_{n}^{(0, \beta-1)}(1)=1$ for all $n \geqslant 0$ (see [12], (4.1.1)) and

$$
\frac{d}{d x}\left(P_{n}^{(0, \beta-1)}-P_{n-1}^{(0, \beta-1)}\right)=\frac{1}{2}(2 n+\beta-1) P_{n-1}^{(0, \beta)},
$$

(see [1], p. 782). The coherence of (3.18) follows in a similar way.
C. Hermite Case. In the Hermite case the distribution function is $d \Psi(x)=e^{-x^{2}} d x$ on $(-\infty, \infty)$ with $\varphi(x) \equiv 1$. Theorem 1 and 2 imply that there cannot exist coherent pairs.

4. SYMMETRICALLY COHERENT PAIRS

In this section u_{0} and u_{1} denote symmetric quasi-definite linear functionals and $\left\{P_{n}\right\}$ and $\left\{T_{n}\right\}$ the corresponding MOPS. The polynomials of even degree are even functions and the polynomials of odd degree odd ones. In this situation (2.1) only can be satisfied with $\sigma_{n}=0$ for all $n \geqslant 1$. Therefore Iserles et al. [4] introduced the concept of symmetrically coherent pair. The pair $\left\{u_{0}, u_{1}\right\}$ of symmetric functionals is called a symmetrically coherent pair if there exist non-zero constants σ_{n} such that

$$
T_{n}=\frac{P_{n+1}^{\prime}}{n+1}-\sigma_{n-1} \frac{P_{n-1}^{\prime}}{n-1} \quad \text { for } n \geqslant 2
$$

In this section we assume $\left\{u_{0}, u_{1}\right\}$ to be a symmetrically coherent pair and we will prove that again at least one of the functionals has to be classical. Therefore we will use the polynomials

$$
C_{n}=\sigma_{n-1} \frac{T_{n}}{t_{n}}-\frac{T_{n-2}}{t_{n-2}}, \quad n \geqslant 1 .
$$

Proposition 1 is replaced by Proposition 2 which can be proved in the same way.

Proposition 2. Let $\left\{u_{0}, u_{1}\right\}$ denote a symmetrically coherent pair, then

$$
n \frac{P_{n}}{p_{n}} u_{0}=D\left(C_{n+1} u_{1}\right) \quad \text { for } \quad n \geqslant 1 .
$$

Corollary 2. Let $\left\{u_{0}, u_{1}\right\}$ denote a symmetrically coherent pair, then

$$
\varphi D u_{1}=\pi u_{1}, \quad x \varphi u_{0}=x B u_{1}, \quad \pi u_{0}=B D u_{1}
$$

with

$$
\begin{align*}
\varphi & =3 \frac{P_{3}}{x p_{3}} C_{2}-\frac{P_{1}}{x p_{1}} C_{4}, \tag{4.1}\\
\pi & =-3 \frac{P_{3}}{x p_{3}} C_{2}^{\prime}+\frac{P_{1}}{x p_{1}} C_{4}^{\prime}, \tag{4.2}\\
B & =\frac{1}{x}\left\{C_{2} C_{4}^{\prime}-C_{4} C_{2}^{\prime}\right\}, \tag{4.3}
\end{align*}
$$

where degree $\varphi \leqslant 4$, degree $\pi \leqslant 3$ and degree $B=4$.
Proof. Proposition 2 with $n=1$ and $n=3$ reads

$$
\begin{align*}
\frac{P_{1}}{p_{1}} u_{0} & =C_{2}^{\prime} u_{1}+C_{2} D u_{1} \tag{4.4}\\
3 \frac{P_{3}}{p_{3}} u_{0} & =C_{4}^{\prime} u_{1}+C_{4} D u_{1} \tag{4.5}
\end{align*}
$$

where $P_{1}, P_{3}, C_{2}^{\prime}$ and C_{4}^{\prime} are odd polynomials. Elimination of u_{0} gives the first identity of Corollary 2. Elimination of $D u_{1}$ gives the second and elimination of u_{1} gives the last relation. The leading coefficient of B is $2\left(\sigma_{1} \sigma_{3} / t_{2} t_{4}\right) \neq 0$.

All above mentioned polynomials are either even or odd. Then all zeros, apart from $x=0$ in the odd polynomials, appear in pairs $\{-\xi, \xi\}$. A result similar to Corollary 2 has been given in [8] based on Proposition 2 with $n=1$ and $n=2$. We have chosen the definition of B in such a way that we have the next lemma.

Lemma 4. (i) If B in (4.3) is of the form $B=2\left(\sigma_{1} \sigma_{3} / t_{2} t_{4}\right)\left(x^{2}-\xi^{2}\right)^{2}$, then $C_{2}=\left(\sigma_{1} / t_{2}\right)\left(x^{2}-\xi^{2}\right)$ and $\left(x^{2}-\xi^{2}\right) \mid C_{4}$.
(ii) If $C_{2} \mid B$, then B is of the form $B=\left(2 \sigma_{1} \sigma_{3} / t_{2} t_{4}\right)\left(x^{2}-\xi^{2}\right)^{2}$.

Proof. Put $C_{2}=\left(\sigma_{1} / t_{2}\right)\left(x^{2}-\alpha^{2}\right)$ and $C_{4}=\left(\sigma_{3} / t_{4}\right)\left(x^{4}+\beta^{2} x^{2}+\gamma^{2}\right)$. Then (4.3) gives

$$
B=\frac{2 \sigma_{1} \sigma_{3}}{t_{2} t_{4}}\left(x^{4}-2 \alpha^{2} x^{2}-\alpha^{2} \beta^{2}-\gamma^{2}\right) .
$$

(i) If $B=2\left(\sigma_{1} \sigma_{3} / t_{2} t_{4}\right)\left(x^{2}-\xi^{2}\right)^{2}$, then $\alpha^{2}=\xi^{2}$ and $-\alpha^{2} \beta^{2}-\gamma^{2}=\xi^{4}$. This implies $C_{2}=\left(\sigma_{1} / t_{2}\right)\left(x^{2}-\xi^{2}\right)$ and $C_{4}(\xi)=0$, i.e. $\left(x^{2}-\xi^{2}\right) \mid C_{4}$.
(ii) If $C_{2} \mid B$, then $B(\alpha)=0$, i.e. $-\alpha^{4}-\alpha^{2} \beta^{2}-\gamma^{2}=0$ and $B=$ $\left(2 \sigma_{1} \sigma_{3} / t_{2} t_{4}\right)\left(x^{2}-2 \alpha^{2} x^{2}+\alpha^{4}\right)$ has the desired form.

Lemma 4 enables us to characterize $\left\{u_{0}, u_{1}\right\}$ in the case that B is a pure square.

Theorem 3. Let $\left\{u_{0}, u_{1}\right\}$ denote a symmetrically coherent pair of quasidefinite linear functionals. Let B in (4.3) be of the form $B=\left(2 \sigma_{1} \sigma_{3} / t_{2} t_{4}\right)$ $\left(x^{2}-\xi^{2}\right)^{2}$. Then
(i) u_{0} is classical with $D\left(\tilde{\varphi} u_{0}\right)=\psi u_{0}$ for some polynomials $\tilde{\varphi}, \psi$, degree $\tilde{\varphi} \leqslant 2$, degree $\psi=1$;
(ii) $\tilde{\varphi} u_{0}=2\left(\sigma_{1} \sigma_{3} / t_{2} t_{4}\right)\left(x^{2}-\xi^{2}\right) u_{1}$.

Proof. It follows from Lemma 4(i) and (4.1) that we can write $\varphi=\left(x^{2}-\xi^{2}\right) \tilde{\varphi}$, for a polynomial $\tilde{\varphi}$ with degree $\tilde{\varphi} \leqslant 2$. The elimination of $D u_{1}$ from (4.4) and (4.5) can be done in such a way that we obtain

$$
\begin{equation*}
x \tilde{\varphi} u_{0}=x \frac{2 \sigma_{1} \sigma_{3}}{t_{2} t_{4}}\left(x^{2}-\xi^{2}\right) u_{1} \tag{4.6}
\end{equation*}
$$

i.e.

$$
\begin{equation*}
\tilde{\varphi} u_{0}=2 \frac{\sigma_{1} \sigma_{3}}{t_{2} t_{4}}\left(x^{2}-\xi^{2}\right) u_{1}+M \delta(0) \tag{4.7}
\end{equation*}
$$

for some constant M. We will show that $M=0$. Then u_{0} is classical, since by (4.4),

$$
D\left(\tilde{\varphi} u_{0}\right)=2 \frac{\sigma_{3}}{t_{4}} D\left(C_{2} u_{1}\right)=2 \frac{\sigma_{3}}{t_{4}} \frac{P_{1}}{p_{1}} u_{0} .
$$

In order to prove that $M=0$ in (4.7) we use Proposition 2 with $n=2$:

$$
\begin{equation*}
2 \frac{P_{2}}{p_{2}} u_{0}=C_{3}^{\prime} u_{1}+C_{3} D u_{1} . \tag{4.8}
\end{equation*}
$$

Elimination of $D u_{1}$ from (4.4) and (4.8) gives

$$
\left(2 \frac{P_{2}}{p_{2}} C_{2}-\frac{P_{1}}{p_{1}} C_{3}\right) u_{0}=\left(C_{2} C_{3}^{\prime}-C_{3} C_{2}^{\prime}\right) u_{1},
$$

which will be abbreviated as

$$
\begin{equation*}
q_{4} u_{0}=b_{4} u_{1} \tag{4.9}
\end{equation*}
$$

where q_{4} and b_{4} are even polynomials, degree $q_{4} \leqslant 4$, degree $b_{4}=4$.
Elimination of u_{0} from (4.6) and (4.9) gives

$$
\begin{equation*}
\tilde{\varphi} b_{4}-2 \frac{\sigma_{1} \sigma_{3}}{t_{2} t_{4}} q_{4}\left(x^{2}-\xi^{2}\right)=0, \tag{4.10}
\end{equation*}
$$

and then elimination of u_{0} from (4.7) and (4.9) leads to $M q_{4}(0)=0$.
If $M=0$ we are ready. Therefore suppose $M \neq 0$. Then $q_{4}(0)=0$. Since $P_{2}(0) \neq 0$, we obtain $C_{2}(0)=0$, i.e. by Lemma 4(i) $\xi=0$. Then (4.7) reduces to

$$
\begin{equation*}
\tilde{\varphi} u_{0}=2 \frac{\sigma_{1} \sigma_{3}}{t_{2} t_{4}} x^{2} u_{1}+M \delta(0) . \tag{4.11}
\end{equation*}
$$

Putting $q_{4}=x^{2} q_{2}, b_{4}=x^{2} b_{2}$ we obtain from (4.9) and (4.10)

$$
\begin{array}{r}
x^{2} q_{2} u_{0}=x^{2} b_{2} u_{1}, \\
\tilde{\varphi} b_{2}-\frac{2 \sigma_{1} \sigma_{3}}{t_{2} t_{4}} q_{2} x^{2}=0 . \tag{4.13}
\end{array}
$$

Then elimination of u_{1} from (4.11) and (4.12) gives $M b_{2}(0)=0$. Since we had assumed $M \neq 0$ we obtain $b_{2}(0)=0$, i.e.

$$
C_{2} C_{3}^{\prime}-C_{3} C_{2}^{\prime}=b_{4}=x^{2} b_{2}=\frac{\sigma_{1} \sigma_{2}}{t_{2} t_{3}} x^{4}
$$

It is easy to see that then $C_{3}=\left(\sigma_{2} / t_{3}\right) x^{3}$.
We have found that $M \neq 0$ implies $C_{2}=\left(\sigma_{1} / t_{2}\right) x^{2}$ and $C_{3}=\left(\sigma_{2} / t_{3}\right) x^{3}$. Then elimination of $D u_{1}$ from (4.4) and (4.8) can be done in such a way that one arrives at

$$
\begin{equation*}
q_{2} u_{0}=\frac{\sigma_{1} \sigma_{2}}{t_{2} t_{3}} x^{2} u_{1} . \tag{4.14}
\end{equation*}
$$

Relation (4.13) reduces to

$$
\begin{equation*}
\tilde{\varphi} \frac{\sigma_{2}}{t_{3}}-2 \frac{\sigma_{3}}{t_{4}} q_{2}=0 . \tag{4.15}
\end{equation*}
$$

Finally (4.11), (4.14) and (4.15) imply $M=0$, a contradiction. This completes the proof of the theorem.

In order to treat the situation where B in (4.3) has two different pairs of zeros $\left\{-\xi_{1}, \xi_{1}\right\}$ and $\left\{-\xi_{2}, \xi_{2}\right\}$ we derive a basic relation similar to relation (3.1).

By Proposition 2 and Corollary 2 we have

$$
\begin{aligned}
(2 n+1) & \frac{P_{2 n+1}}{p_{2 n+1}} B u_{1} \\
& =(2 n+1) \frac{P_{2 n+1}}{x p_{2 n+1}} x B u_{1} \\
& =(2 n+1) \frac{P_{2 n+1}}{x p_{2 n+1}} x \varphi u_{0}=\varphi D\left(C_{2 n+2} u_{1}\right) \\
& =\varphi C_{2 n+2}^{\prime} u_{1}+\varphi C_{2 n+2} D u_{1}=\left(\varphi C_{2 n+2}^{\prime}+C_{2 n+2} \pi\right) u_{1} .
\end{aligned}
$$

Hence

$$
\begin{equation*}
(2 n+1) \frac{P_{2 n+1}}{x p_{2 n+1}} B=\varphi \frac{C_{2 n+2}^{\prime}}{x}+C_{2 n+2} \frac{\pi}{x}, \quad n \geqslant 0 . \tag{4.16}
\end{equation*}
$$

We have used the fact that $P_{2 n+1}, C_{2 n+2}^{\prime}$ and π are odd polynomials.

Lemma 5. Let ξ be such that $B(\xi)=0, \varphi(\xi) \neq 0$, where B and φ denote the polynomials defined in (4.3) and (4.1). Then there exists a k independent of $n, k \neq 0$, such that

$$
C_{2 n+2}(\xi)+k \frac{C_{2 n+2}^{\prime}(\xi)}{\xi}=0 \quad \text { for all } n \neq 0
$$

Proof. Substitution of ξ in (4.16) gives

$$
\varphi(\xi) \frac{C_{2 n+2}^{\prime}(\xi)}{\xi}+C_{2 n+2}(\xi) \frac{\pi(\xi)}{\xi}=0 .
$$

(If $\xi=0$, then $\pi(\xi) / \xi$ has to be read as $\pi(\xi) / \xi=\lim _{x \rightarrow 0}(\pi(x) / x)$; the same should be done with $C_{2 n+2}^{\prime}(\xi) / \xi$.)

The relation with $n=0$ reads

$$
\varphi(\xi) \frac{C_{2}^{\prime}(\xi)}{\xi}+C_{2}(\xi) \frac{\pi(\xi)}{\xi}=0 .
$$

Since $C_{2}^{\prime}(\xi) / \xi=2\left(\sigma_{1} / t_{2}\right) \neq 0$ and $\varphi(\xi) \neq 0$ it follows $\pi(\xi) / \xi \neq 0$. Then the lemma is satisfied with $k=\varphi(\xi)(\xi / \pi(\xi)) \neq 0$.

Lemma 6. Suppose that there exist $\xi_{1}, \xi_{2}, k_{1} \neq 0$ and $k_{2} \neq 0$ such that

$$
\begin{equation*}
C_{2 n+2}\left(\xi_{1}\right)+k_{1} \frac{C_{2 n+2}^{\prime}\left(\xi_{1}\right)}{\xi_{1}}=0 \quad \text { and } \quad C_{2 n+2}\left(\xi_{2}\right)+k_{2} \frac{C_{2 n+2}^{\prime}\left(\xi_{2}\right)}{\xi_{2}}=0 \tag{4.17}
\end{equation*}
$$

for all $n \geqslant 0$. Then $\xi_{1}= \pm \xi_{2}$ and $k_{1}=k_{2}$.
Proof. The polynomials $T_{2 n}$ and $C_{2 n}$ are even polynomials. Write $T_{n}^{*}\left(x^{2}\right)=T_{2 n}(x)$ and $C_{n}^{*}\left(x^{2}\right)=C_{2 n}(x)$, then $\left\{T_{n}^{*}\right\}$ are orthogonal with respect to the functional u_{1}^{*} defined by the moments $\left\langle u_{1}^{*}, x^{n}\right\rangle=\left\langle u_{1}, x^{2 n}\right\rangle$, $n=0,1,2, \ldots$. The relations (4.17) become

$$
C_{n+1}^{*}\left(\xi_{j}^{2}\right)+2 k_{j} C_{n+1}^{* \prime}\left(\xi_{j}^{2}\right)=0, \quad j=1,2, \quad n \geqslant 0 .
$$

Proceeding as in the proof of Lemma 2 we obtain $\xi_{1}^{2}=\xi_{2}^{2}$ and $k_{1}=k_{2}$.
Lemma 7. Suppose B in (4.3) has two different pairs of zeros. Then
(i) at least one pair of zeros of B is also a pair of zeros of φ;
(ii) if $\left(x^{2}-\xi^{2}\right) \mid B$ and $\left(x^{2}-\xi^{2}\right) \mid \varphi$, then $C_{2}(\xi) \neq 0$ and $\left(x^{2}-\xi^{2}\right) \mid \pi$.

Proof. Assertion (i) of the lemma is a direct consequence of Lemma 5 and Lemma 6. If $\{-\xi, \xi\}$ is a common pair of zeros of B and φ, then (4.16) with $n=0$ implies $x^{2}-\xi^{2} \mid C_{2}(\pi / x)$. Since B has two different pairs of zeros Lemma 4(ii) implies $C_{2}(\xi) \neq 0$. Hence $x^{2}-\xi^{2} \mid \pi$.

Theorem 4. Let $\left\{u_{0}, u_{1}\right\}$ denote a symmetrically coherent pair of quasidefinite linear functionals. Let B in (4.3) be of the form

$$
B=2 \frac{\sigma_{1} \sigma_{3}}{t_{2} t_{4}}\left(x^{2}-\xi_{1}^{2}\right)\left(x^{2}-\xi_{2}^{2}\right) \quad \text { with } \quad \xi_{1}^{2} \neq \xi_{2}^{2}
$$

Then
(i) u_{1} is classical with $D\left(\tilde{\varphi} u_{1}\right)=\psi u_{1}$ for some polynomials $\tilde{\varphi}, \psi$, degree $\tilde{\varphi} \leqslant 2$, degree $\psi=1$;
(ii) there exists $\xi \in\left\{\xi_{1}, \xi_{2}\right\}$ such that

$$
\tilde{\varphi} u_{0}=2 \frac{\sigma_{1} \sigma_{3}}{t_{2} t_{4}}\left(x^{2}-\xi^{2}\right) u_{1}
$$

Proof. According to Lemma 7(i) we may suppose that $\left\{-\xi_{1}, \xi_{1}\right\}$ is also a pair of zeros of φ. Then, by Lemma 7 (ii), $C_{2}\left(\xi_{1}\right) \neq 0$ and $\left\{-\xi_{1}, \xi_{1}\right\}$ is also a pair of zeros of π. Put

$$
B=\left(x^{2}-\xi_{1}^{2}\right) \widetilde{B}, \quad \varphi=\left(x^{2}-\xi_{1}^{2}\right) \tilde{\varphi}, \quad \pi=\left(x^{2}-\xi_{1}^{2}\right) \pi_{1} .
$$

Then (4.16) becomes

$$
\begin{equation*}
(2 n+1) \frac{P_{2 n+1}}{p_{2 n+1}} \tilde{B}=\tilde{\varphi} C_{2 n+2}^{\prime}+C_{2 n+2} \pi_{1}, \quad n \geqslant 0 . \tag{4.18}
\end{equation*}
$$

Moreover, the relations $x \varphi u_{0}=x B u_{1}, B D u_{1}=\pi u_{0}$ and $\varphi D u_{1}=\pi u_{1}$ from Corollary 2 give

$$
\begin{align*}
x^{2} \tilde{\varphi} u_{0} & =x^{2} \widetilde{B} u_{1}+M \delta\left(\xi_{1}\right)+M \delta\left(-\xi_{1}\right), \tag{4.19}\\
x \widetilde{B} D u_{1} & =x \pi_{1} u_{0}+N \delta\left(\xi_{1}\right)+N \delta\left(-\xi_{1}\right), \tag{4.20}\\
x \tilde{\varphi} D u_{1} & =x \pi_{1} u_{1}+K \delta\left(\xi_{1}\right)+K \delta\left(-\xi_{1}\right), \tag{4.21}
\end{align*}
$$

where we have used the fact that the functionals applied on polynomials of odd degree have to give zero.

We will show $M=N=K=0$.

It follows from (4.18) and Proposition 2 that

$$
\left(\tilde{\varphi} C_{2 n+2}^{\prime}+C_{2 n+2} \pi_{1}\right) u_{0}=(2 n+1) \frac{P_{2 n+1}}{p_{2 n+1}} \widetilde{B} u_{0}=\widetilde{B}\left(C_{2 n+2}^{\prime} u_{1}+C_{2 n+2} D u_{1}\right) .
$$

Hence

$$
\frac{C_{2 n+2}^{\prime}}{x}\left\{x^{2} \tilde{\varphi} u_{0}-x^{2} \widetilde{B} u_{1}\right\}=C_{2 n+2}\left\{x \widetilde{B} D u_{1}-x \pi_{1} u_{0}\right\}, \quad n \geqslant 0 .
$$

Then (4.19) and (4.20) imply

$$
\begin{equation*}
2 \frac{C_{2 n+2}^{\prime}\left(\xi_{1}\right)}{\xi_{1}} M=2 C_{2 n+2}\left(\xi_{1}\right) N, \quad n \geqslant 0 . \tag{4.22}
\end{equation*}
$$

Observe that $C_{2}^{\prime}\left(\xi_{1}\right) / \xi_{1}=2\left(\sigma_{1} / t_{2}\right) \neq 0, C_{2}\left(\xi_{1}\right) \neq 0$; then $M=0$ if and only if $N=0$. Consider the second pair of zeros $\left\{-\xi_{2}, \xi_{2}\right\}$ of B. There are two possibilities: $\varphi\left(\xi_{2}\right) \neq 0$ and $\varphi\left(\xi_{2}\right)=0$. If $\varphi\left(\xi_{2}\right) \neq 0$, then Lemma 5 and Lemma 6 imply that relation (4.22) has to be trivial, i.e. $M=N=0$. If $\varphi\left(\xi_{2}\right)=0$, then we can proceed with ξ_{2} as with ξ_{1} and arrive at a relation for ξ_{2} similar to relation (4.22) for ξ_{1}. Again Lemma 6 implies that at least one of the relations has to be a trivial one, and without loss of generality we may suppose that the relation (4.22) for ξ_{1} is trivial. Hence in both cases we obtain $M=N=0$.

In order to prove that $K=0$ we proceed as follows. With (4.4) and (4.18) for $n=0$ we obtain

$$
\tilde{\varphi} \frac{P_{1}}{p_{1}} u_{0}=\tilde{\varphi}\left(C_{2}^{\prime} u_{1}+C_{2} D u_{1}\right)=\left(\frac{P_{1}}{p_{1}} \widetilde{B}-C_{2} \pi_{1}\right) u_{1}+\tilde{\varphi} C_{2} D u_{1}
$$

or

$$
\frac{P_{1}}{x p_{1}}\left\{x^{2} \tilde{\varphi} u_{0}-x^{2} \tilde{B} u_{1}\right\}=C_{2}\left\{x \tilde{\varphi} D u_{1}-x \pi_{1} u_{1}\right\}
$$

Then (4.19) with $M=0$ and (4.21) imply

$$
2 K C_{2}\left(\xi_{1}\right)=0
$$

Since $C_{2}\left(\xi_{1}\right) \neq 0$, we have $K=0$.
Now we are able to prove the assertions of the theorem. Relation (4.21) with $K=0$ reads $x \tilde{\varphi} D u_{1}=x \pi_{1} u_{1}$. Since u_{1} is symmetric and $\tilde{\varphi}^{\prime}$ and π_{1} are
odd polynomials we have $\left\langle\tilde{\varphi} D u_{1}, 1\right\rangle=\left\langle\pi_{1} u_{1}, 1\right\rangle=0$. Then the relation can be reduced to

$$
\begin{equation*}
\tilde{\varphi} D u_{1}=\pi_{1} u_{1} . \tag{4.23}
\end{equation*}
$$

Then $D\left(\tilde{\varphi} u_{1}\right)=\tilde{\varphi}^{\prime} u_{1}+\tilde{\varphi} D u_{1}=\left(\tilde{\varphi}^{\prime}+\pi_{1}\right) u_{1}=\psi u_{1}$, with degree $\tilde{\varphi} \leqslant 2$, degree $\psi \leqslant 1$. However, ψ is an odd polynomial and $\psi \equiv 0$ is impossible for a quasi-definite functional u_{1}. Then degree $\psi=1$ and u_{1} is classical. This proves assertion (i) of the theorem.

In the same way (4.19) with $M=0$ reduces to

$$
\begin{equation*}
x \tilde{\varphi} u_{0}=x \widetilde{B} u_{1} \tag{4.24}
\end{equation*}
$$

or

$$
\begin{equation*}
\tilde{\varphi} u_{0}=\widetilde{B} u_{1}+L \delta(0) . \tag{4.25}
\end{equation*}
$$

Observe that $\widetilde{B}=\left(2 \sigma_{1} \sigma_{3} / t_{2} t_{4}\right)\left(x^{2}-\xi_{2}^{2}\right)$.
We will prove that $L=0$ in (4.25), which completes the proof of assertion (ii) of the theorem. Elimination of u_{0} from (4.8) and (4.24) gives, using (4.23),

$$
C_{3}^{\prime} \tilde{\varphi}+C_{3} \pi_{1}-2 \frac{P_{2}}{p_{2}} \widetilde{B}=0
$$

Then elimination of u_{0} from (4.8) and (4.25) gives

$$
2 \frac{P_{2}(0)}{p_{2}} L=0 .
$$

Since $P_{2}(0) \neq 0$, we obtain $L=0$.
Theorem 3 and Theorem 4 enables us to give all symmetrically coherent pairs which can be represented by distribution functions. In Theorem 3 and Theorem 4 the ξ may be complex, in the distribution functions below we always assume the ξ to be real.
D. Hermite Case. The classical distribution function is $d \Psi(x)=e^{-x^{2}} d x$ on $(-\infty, \infty)$ with $\varphi(x) \equiv 1$. Theorem 3 and Theorem 4 give the symmetrically coherent pairs of distribution functions on $(-\infty, \infty)$

$$
\begin{gathered}
\left\{e^{-x^{2}} d x, \frac{e^{-x^{2}}}{x^{2}+\xi^{2}} d x\right\} \quad \text { with } \quad \xi \neq 0 \\
\left\{\left(x^{2}+\xi^{2}\right) e^{-x^{2}} d x, e^{-x^{2}} d x\right\}
\end{gathered}
$$

It is easy to prove that these pairs are indeed symmetrically coherent pairs.
E. Gegenbauer Case. The classical distribution function is $d \Psi(x)=$ $\left(1-x^{2}\right)^{\alpha} d x$ on $(-1,1)$ with $\alpha>-1$; the corresponding functional u satisfies $D(\varphi u)=\psi u$ with $\varphi(x)=1-x^{2}$.

We obtain the following symmetrically coherent pairs of distribution functions with obvious definition of the spectra

$$
\left\{\left(1-x^{2}\right)^{\alpha-1} d x, \frac{\left(1-x^{2}\right)^{\alpha}}{x^{2}+\xi^{2}} d x\right\}, \quad \alpha>0, \quad \xi \neq 0
$$

and

$$
\left\{\left(1-x^{2}\right)^{\alpha-1} d x, \frac{\left(1-x^{2}\right)^{\alpha}}{\xi^{2}-x^{2}} d x+M \delta(\xi)+M \delta(-\xi)\right\}
$$

with $\alpha>0,|\xi| \geqslant 1, M \geqslant 0$.

$$
\begin{aligned}
& \left\{\left(x^{2}+\xi^{2}\right)\left(1-x^{2}\right)^{\alpha-1} d x,\left(1-x^{2}\right)^{\alpha} d x\right\}, \quad \alpha>0 \\
& \left\{\left(\xi^{2}-x^{2}\right)\left(1-x^{2}\right)^{\alpha-1} d x,\left(1-x^{2}\right)^{\alpha} d x\right\}
\end{aligned}
$$

with $|\xi|>1, \alpha>0$ and

$$
\{d x+M \delta(1)+M \delta(-1), d x\}, \quad M \geqslant 0 .
$$

Again one can prove that the mentioned pairs are coherent pairs.
Remark. In [2] the concept of generalized coherent pairs has been introduced. It reads for linear functionals: let u_{0} and u_{1} denote quasidefinite linear functionals and let $\left\{P_{n}\right\}$ and $\left\{T_{n}\right\}$ denote their MOPS, then $\left\{u_{0}, u_{1}\right\}$ is called a generalized coherent pair if there exist constants σ_{n}, τ_{n} such that

$$
T_{n}=\frac{P_{n+1}^{\prime}}{n+1}-\sigma_{n} \frac{P_{n}^{\prime}}{n}-\tau_{n} \frac{P_{n-1}^{\prime}}{n-1} \quad \text { for } \quad n \geqslant 2 .
$$

Let $\alpha>-1, \xi_{1}<0, \xi_{2}<0, M \geqslant 0$, then

$$
\left\{x^{\alpha} e^{-x} d x, \frac{1}{x-\xi_{2}} x^{\alpha+1} e^{-x} d x+M \delta\left(\xi_{2}\right)\right\}
$$

and

$$
\left\{\left(x-\xi_{1}\right) x^{\alpha} e^{-x} d x, x^{\alpha+1} e^{-x} d x\right\}
$$

are coherent pairs. From this observation it easily follows that

$$
\left\{\left(x-\xi_{1}\right) x^{\alpha} e^{-x} d x, \frac{1}{x-\xi_{2}} x^{\alpha+1} e^{-x} d x+M \delta\left(\xi_{2}\right)\right\}
$$

is a generalized coherent pair. (Obviously the $d x$-terms are distribution functions on $[0, \infty)$ and if $M \neq 0$ the last term gives a contribution from ξ_{2} outside $(0, \infty)$.) Here none of the distribution functions is a classical one, so the results of this paper cannot be generalized to generalized coherent pairs.

ACKNOWLEDGMENT

I am much obliged to the referee who pointed out a serious omission in the first version of the paper.

REFERENCES

[1] M. Abramowitz and I. A. Stegun, "Handbook of Mathematical Functions," Dover, New York, 1970.
[2] M. G. de Bruin and H. G. Meijer, Zeros of orthogonal polynomials in a non-discrete Sobolev space, Ann. Numer. Math. 2 (1995), 233-246.
[3] T. S. Chihara, "An Introduction to Orthogonal Polynomials," Gordon and Breach, New York, 1978.
[4] A. Iserles, P. E. Koch, S. P. Nørsett, and J. M. Sanz-Serna, On polynomials orthogonal with respect to certain Sobolev inner products, J. Approx. Theory 65 (1991), 151-175.
[5] F. Marcellán, M. Alfaro, and M. L. Rezola, Orthogonal polynomials on Sobolev spaces: Old and new directions, J. Comput. Appl. Math. 48 (1993), 113-131.
[6] F. Marcellán, T. E. Pérez, and M. A. Piñar, Orthogonal polynomials on weighted Sobolev spaces: The semiclassical case, Ann. Numer. Math. 2 (1995), 93-122.
[7] F. Marcellán and J. C. Petronilho, Orthogonal polynomials and coherent pairs: The classical case, Indag. Math. N.S. 6 (1995), 287-307.
[8] F. Marcellán, J. C. Petronilho, T. E. Pérez, and M. A. Piñar, What is beyond coherent pairs of orthogonal polynomials?, J. Comput. Appl. Math. 65 (1995), 267-277.
[9] P. Maroni, Une théorie algébrique des polynômes orthogonaux. Application aux polynômes orthogonaux semi-classiques, in "Orthogonal Polynomials and Their Applications" (C. Brezinski, L. Gori, and A. Ronveaux, Eds.), pp. 95-130, IMACS Annals on Comp. and Appl. Math., Vol. 9, Baltzer, Basel, 1991.
[10] H. G. Meijer, Coherent pairs and zeros of Sobolev-type orthogonal polynomials, Indag. Math. N.S. 4 (1993), 163-176.
[11] H. G. Meijer, A short history of orthogonal polynomials in a Sobolev space, I. The nondiscrete case, Nieuw Arch. Wisk. (4) 14 (1996), 93-112.
[12] G. Szegö, "Orthogonal Polynomials," Amer. Math. Soc. Colloq. Publ., Vol. 23, 4th ed., Amer. Math. Soc., Providence, RI, 1975.

